• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 123458, Москва, ул. Таллинская, д.34
Телефон: 8(495)916-88-29
Факс: 8(495)916-88-29
Эл. почта: miem@hse.ru

     
Руководство
и.о. директора, научный руководитель Крук Евгений Аврамович
Заместитель директора Абрамешин Андрей Евгеньевич
Заместитель директора Романов Виктор Владимирович
Заместитель директора Костинский Александр Юльевич
Заместитель директора Прохорова Вероника Борисовна
Заместитель директора по учебной работе Тумковский Сергей Ростиславович
Заместитель директора по научной работе Аксенов Сергей Алексеевич
Образовательные программы
Бакалаврская программа

Инфокоммуникационные технологии и системы связи

4 года
Очная форма обучения
60/10/3
60 бюджетных мест
10 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Бакалаврская программа

Информатика и вычислительная техника

4 года
Очная форма обучения
126/40/15
126 бюджетных мест
40 платных мест
15 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Бакалаврская программа

Информационная безопасность

4 года
Очная форма обучения
50/20/10
50 бюджетных мест
20 платных мест
10 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Программа специалитета

Компьютерная безопасность

5,5 лет
Очная форма обучения
40/75/5
40 бюджетных мест
75 платных мест
5 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Прикладная математика

4 года
Очная форма обучения
87/40/6
87 бюджетных мест
40 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Инжиниринг в электронике

2 года
Очная форма обучения
20/5/1
20 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Интернет вещей и киберфизические системы

2 года
Очная форма обучения
20/5/1
20 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Компьютерные системы и сети

2 года
Очная форма обучения
50/5/2
50 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Математические методы моделирования и компьютерные технологии

2 года
Очная форма обучения
20/5/3
20 бюджетных мест
5 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Материалы. Приборы. Нанотехнологии

2 года
Очная форма обучения
20/5/1
20 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системы управления и обработки информации в инженерии

2 года
Очная форма обучения
25/5/1
25 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Суперкомпьютерное моделирование в науке и инженерии

2 года
Очная форма обучения
20/5/5
20 бюджетных мест
5 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках

Имитация квантового отжига

В рамках постоянно действующего научно-исследовательского семинара МИЭМ НИУ ВШЭ «Суперкомпьютерное моделирование в науке и инженерии, или Вычислительные среды», выступил с докладом «Применение квантового отжига к задачам машинного обучения» Игорь Побойко (ИТФ им. Л.Д.Ландау РАН, Сколковский Институт Науки и Технологий, НИУ ВШЭ)

В работе обсуждается применение квантовых алгоритмов оптимизации - а именно, квантового отжига (и основанном на нём алгоритма квантового Монте-Карло) - к задачам машинного обучения на примере простейшей задачи - бинарного перцептрона. Приводится аргументация, что эффективность квантовых алгоритмов связана с особенностями структуры энергетического профиля - наличие в термодинамическом пределе областей с большой плотностью локальных минимумов.

Доклад основан на работе Carlo Baldassi и Riccardo Zecchina, «Efficiency of quantum versus classical annealing in non-convex learning problems» (arXiv:1706.08470v3). 

Широкий класс практических задач --- в частности, в области машинного обучения --- сводится к решению математической задачи так называемой глобальной оптимизации: поиску глобального минимума сложной функции многих переменных. Задача глобальной оптимизации существенно усложняется для функций, имеющих большое число локальных минимумов, в которых "застревают" стандартные алгоритмы поиска минимумов функций. 

Одним из традиционных методов глобальной оптимизации является так называемый метод имитации отжига (simulated annealing, SA), основанный на простой физической аналогии: при понижении температуры, физическая система приходит в состояние с наименьшей энергией. В методе SA искомая целевая фунцкия отождествляется с энергетическим профилем воображаемой физической системы. Метод SA состоит в моделировании поведения данной воображаемой физической системы при конечной температуре, обычно с помощью техники Монте-Карло. В процессе моделирования, температура постепенно понижается согласно некоторому протоколу, и система приходит в состояние с наименьшей энергией --- т.е., искомый глобальный минимум.

Во многих случаях метод SA дает хорошие результаты. Наибольшую сложность для метода SA представляют задачи с т.н. сложным энергетическим ландшафтом: в пространстве параметров присутствуют области с большой плотностью локальных минимумов, а глобальный минимум являются изолированным. 

Для таких задач предложен метод имитации квантового отжига (simulated quantum annealing, SQA): рассматривается квантово-механический гамильтониан, зависящий от параметра (приложенного внешнего поля), предел которого при стремлении внешнего поля к нулю представляет собой целевую функцию. Моделирование методом Монте-Карло стартует с конечного (большого) значения внешнего поля, которое в процессе моделирования уменьшается согласно заданному протоколу. В работе рассмотрено несколько приложений, в которых метод SQA позволяет значительно ускорить поиск основного состояния системы (т.е., глобального минимума энергии) за счет квантово-механического туннелирования между метастабильными состояниями (т.е., локальными минимумами).