• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 123458, Москва, Таллинская улица, 34 (м. "Строгино").

Телефон:
(495) 772-95-90 *11086
(915) 317-30-12

E-mail: avbelov@hse.ru

Руководство

Руководитель Белов Александр Владимирович

Заместитель руководителя Гришунина Юлия Борисовна

Мероприятия
28 июля – 1 августа
31-я конференция IUPAP по вычислительной физике (CCP2019) "31st IUPAP Conference in Computional Physics (CCP2019)"
Статья
Phase diagrams of polarized ultra-cold gases on attractive-U Hubbard ladders

Burovski E., Ikhsanov R., Kuznetsov A. et al.

Journal of Physics: Conference Series. 2019. Vol. 1163. No. 012046. P. 012046-1-012046-5.

Глава в книге
Population Annealing and Large Scale Simulations in Statistical Mechanics

Shchur L., Barash L., Weigel M. et al.

In bk.: Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. Springer, 2019. P. 354-366.

Препринт
Краткий анализ криптографических механизмов защищенного взаимодействия контрольных и измерительных устройств

Нестеренко А. Ю., Лебедев П. А., Семенов А. М.

Криптографические исследования. б/н. Технический комитет по стандартизации "Криптографическая защита информации", 2019

Физика помогла решить проблему синхронизации суперкомпьютеров

Уникальность обучения по магистерской программе «Суперкомпьютерное моделирование в науке и инженерии» состоит в обучении студентов использованию знаний из различных областей математики, физики, материаловедения, социальных наук, геномики, информатики и т.п. для решения актуальных задач в области высокопроизводительных вычислений, обработки данных большого объема и генерации из них новых знаний.

В рамках магистерской программы «Суперкомпьютерное моделирование в науке и инженерии» планируется проведение студентами междисциплинарных исследований. Уникальность обучения по программе состоит в обучении студентов использованию знаний, во-первых, из различных областей фундаментальной науки - математики, физики, материаловедения, социальных наук, геномики, информатики и, во-вторых, для решения актуальных задач в области высокопроизводительных вычислений, интеллектуальной обработки данных большого объема и генерации из них новых знаний.

В качестве примера опишем кратко недавнее исследование, проведенное аспиранткой, стажером-исследователем МИЭМ НИУ ВШЭ Лилией Зигануровой под руководством профессора Льва Николаевича Щура,  научного руководителя магистерской программы «Суперкомпьютерное моделирование в науке и инженерии». Ими решена проблема синхронизации сотен миллионов узлов суперкомпьютеров будущего с помощью использования знаний из статистической физики. Исследование в ближайшее время будет опубликовано в высоко цитируемом научном журнале Physical Review E, препринт статьи доступен в  архиве библиотеки Корнелльского университета .

Проблема синхронизации параллельных вычислений исследована в рамках метода параллельного моделирования дискретных событий (ПМДС). Этот метод применяется для моделирования различных задач, от классической задачи диспетчеризации полетов до задач моделирования новых материалов. Применимость метода исследована при моделировании с использованием миллионов узлов суперкомпьютера BlueGene.

В исследовании Щура и Зигануровой используется аналогия эволюции профиля локальных времен процессорных узлов с задачей роста поверхности при пучково-молекулярной эпитаксии (РППМЭ). Проблема РППМЭ активно исследуется физиками, и получено существенное понимание механизмов роста. Именно эти знания и используются для анализа проблемы.

При организации параллельных вычислений особо важными элементами, влияющими на эффективность вычислений, являются:
- обмен данными между памятью различных узлов;
- синхронизация узлов; - процент загрузки узлов;
- масштабируемость этих параметров, то есть, их зависимость от числа узлов.

Метод ПМДС свободен от проблемы обмена большим объемом данных между памятью узлов. В нем синхронизация обеспечивается за счет посылки сообщений с информацией об изменении статуса узла.  Каждое сообщение имеет штамп времени наступления события (отсюда и происходит название – дискретных событий, изменения происходят не непрерывно во времени). Такие времена образуют профиль локальных времен. Исследуя модель эволюции времен, можно показать, что консервативный алгоритм метода ПМДС не имеет мертвых состояний – скорость эволюции профиля времен строго положительная величина. Однако, выявлен недостаток применения такого алгоритма – растет средняя ширина профиля времен, то есть растет степень десинхронизации узлов как во времени, так и от числа узлов. Поэтому, такая реализация ПМДС не является полностью масштабируемой.

Исследована модификация консервативного алгоритма, при которой обмен сообщениями между узлами можно отнести к сетям малого мира. На языке физики, дополнительно к локальному взаимодействию вводится случайное и редкое дальнодействие. В результате, степенной рост десинхронизации с числом элементов заменяется на логарифмический и выходит на константу. Такая модификация является полностью масштабируемой.

Авторы планируют проведение дополнительных исследований с целью более детального соотнесения результатов, полученных с помощью их модели, с результатами практических исследований конкретных применений алгоритма.  Это даст возможность для получения точных предсказаний по эффективности конкретных применений.

Планируется проведение подобных междисциплинарных исследований студентами магистерской программы «Суперкомпьютерное моделирование в науке и инженерии». Уникальность обучения по программе состоит в обучении студентов использованию знаний из различных областей математики, физики, материаловедения, социальных наук, геномики, информатики и т.п. для решения актуальных задач в области высокопроизводительных вычислений, обработки данных большого объема и генерации из них новых знаний.

Работа выполнена в рамках гранта РНФ 14-21-00158.

 

В рамках магистерской программы «Суперкомпьютерное моделирование в науке и инженерии» планируется проведение студентами междисциплинарных исследований. Уникальность обучения по программе состоит в обучении студентов использованию знаний, во-первых, из различных областей фундаментальной науки - математики, физики, материаловедения, социальных наук, геномики, информатики и, во-вторых, для решения актуальных задач в области высокопроизводительных вычислений, интеллектуальной обработки данных большого объема и генерации из них новых знаний.

 

В качестве примера опишем кратко недавнее исследование, проведенное аспиранткой НИУ ВШЭ Л.Ф. Зигануровой под руководством профессора Щура Л.Н.,  научного руководителя магистерской программы «Суперкомпьютерное моделирование в науке и инженерии». Ими решена проблема синхронизации сотен миллионов узлов суперкомпьютеров будущего с помощью использования знаний из статистической физики. Исследование в ближайшее время будет опубликовано в высоко цитируемом научном журнале PhysicalReviewE, препринт статьи доступен в архиве https://arxiv.org/abs/1807.04463

 

Проблема синхронизации параллельных вычислений исследована в рамках метода параллельного моделирования дискретных событий (ПМДС). Этот метод применяется для моделирования различных задач, от классической задачи диспетчеризации полетов до задач моделирования новых материалов. Применимость метода исследована при моделировании с использованием миллионов узлов суперкомпьютера BlueGene.

 

В исследовании Щура и Зигануровой используется аналогия эволюции профиля локальных времен процессорных узлов с задачей роста поверхности при пучково-молекулярной эпитаксии (РППМЭ). Проблема РППМЭ активно исследуется физиками, и получено существенное понимание механизмов роста. Именно эти знания и используются для анализа проблемы.

 

При организации параллельных вычислений особо важными элементами, влияющими на эффективность вычислений, являются: - обмен данными между памятью различных узлов; - синхронизация узлов; - процент загрузки узлов; - масштабируемость этих параметров, то есть, их зависимость от числа узлов.

 

Метод ПМДС свободен от проблемы обмена большим объемом данных между памятью узлов. В нем синхронизация обеспечивается за счет посылки сообщений с информацией об изменении статуса узла.  Каждое сообщение имеет штамп времени наступления события (отсюда и происходит название – дискретных событий, изменения происходят не непрерывно во времени). Такие времена образуют профиль локальных времен. Исследуя модель эволюции времен, можно показать, что консервативный алгоритм метода ПМДС не имеет мертвых состояний – скорость эволюции профиля времен строго положительная величина. Однако, выявлен недостаток применения такого алгоритма – растет средняя ширина профиля времен, то есть растет степень десинхронизации узлов как во времени, так и от числа узлов. Поэтому, такая реализация ПМДС не является полностью масштабируемой.

 

Исследована модификация консервативного алгоритма, при которой обмен сообщениями между узлами можно отнести к сетям малого мира. На языке физики, дополнительно к локальному взаимодействию вводится случайное и редкое дальнодействие. В результате, степенной рост десинхронизации с числом элементов заменяется на логарифмический и выходит на константу. Такая модификация является полностью масштабируемой.

 

Авторы планируют проведение дополнительных исследований с целью более детального соотнесения результатов, полученных с помощью их модели, с результатами практических исследований конкретных применений алгоритма.  Это даст возможность для получения точных предсказаний по эффективности конкретных применений.

Планируется проведение подобных междисциплинарных исследований студентами магистерской программы «Суперкомпьютерное моделирование в науке и инженерии». Уникальность обучения по программе состоит в обучении студентов использованию знаний из различных областей математики, физики, материаловедения, социальных наук, геномики, информатики и т.п. для решения актуальных задач в области высокопроизводительных вычислений, обработки данных большого объема и генерации из них новых знаний.

 

Работа выполнена в рамках гранта РНФ 14-21-00158.