• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 123458, Москва, Таллинская улица, 34 (м. "Строгино").

Телефон:
(495) 772-95-90 *11086
(915) 317-30-12

E-mail: avbelov@hse.ru

Руководство
Заместитель руководителя Гришунина Юлия Борисовна
Статья
On the impossibility of an invariant attack on Kuznyechik

Fomin D.

Journal of Computer Virology and Hacking Techniques. 2021.

Глава в книге
Тренировка вербализации частей объекта улучшает осознание правил, но не научение им у детей 6-8 лет
В печати

Монина М. Ю., Жердева М. П., Котова Т. Н. и др.

В кн.: Когнитивная наука в Москве: новые исследования. Материалы конференции 23 – 24 июня 2021. М.: Буки Веди, 2021. С. 291-295.

Препринт
Construction of a set of circulant matrix submatrices for faster MDS matrix verification

Stanislav S. Malakhov.

math. arXiv. Cornell University, 2021. No. 2110.13325.

О применении квантовых алгоритмов оптимизации к задачам машинного обучения

В рамках постоянно действующего научно-исследовательского семинара  «Суперкомпьютерное моделирование в науке и инженерии, или Вычислительные среды»  (Магистерская программа "Суперкомпьютерное моделирование в науке и инженерии") выступил с докладом «Применение квантового отжига к задачам машинного обучения» Игорь Побойко (ИТФ им. Л.Д.Ландау РАН, Сколковский Институт Науки и Технологий, НИУ ВШЭ).

В работе обсуждается применение квантовых алгоритмов оптимизации - а именно, квантового отжига (и основанном на нём алгоритма квантового Монте-Карло) - к задачам машинного обучения на примере простейшей задачи - бинарного перцептрона. Приводится аргументация, что эффективность квантовых алгоритмов связана с особенностями структуры энергетического профиля - наличие в термодинамическом пределе областей с большой плотностью локальных минимумов.

Доклад основан на работе Carlo Baldassi и Riccardo Zecchina, «Efficiency of quantum versus classical annealing in non-convex learning problems» (arXiv:1706.08470v3). 

Широкий класс практических задач --- в частности, в области машинного обучения --- сводится к решению математической задачи так называемой глобальной оптимизации: поиску глобального минимума сложной функции многих переменных. Задача глобальной оптимизации существенно усложняется для функций, имеющих большое число локальных минимумов, в которых "застревают" стандартные алгоритмы поиска минимумов функций. 

Одним из традиционных методов глобальной оптимизации является так называемый метод имитации отжига (simulated annealing, SA), основанный на простой физической аналогии: при понижении температуры, физическая система приходит в состояние с наименьшей энергией. В методе SA искомая целевая фунцкия отождествляется с энергетическим профилем воображаемой физической системы. Метод SA состоит в моделировании поведения данной воображаемой физической системы при конечной температуре, обычно с помощью техники Монте-Карло. В процессе моделирования, температура постепенно понижается согласно некоторому протоколу, и система приходит в состояние с наименьшей энергией --- т.е., искомый глобальный минимум.

Во многих случаях метод SA дает хорошие результаты. Наибольшую сложность для метода SA представляют задачи с т.н. сложным энергетическим ландшафтом: в пространстве параметров присутствуют области с большой плотностью локальных минимумов, а глобальный минимум являются изолированным. 

Для таких задач предложен метод имитации квантового отжига (simulated quantum annealing, SQA): рассматривается квантово-механический гамильтониан, зависящий от параметра (приложенного внешнего поля), предел которого при стремлении внешнего поля к нулю представляет собой целевую функцию. Моделирование методом Монте-Карло стартует с конечного (большого) значения внешнего поля, которое в процессе моделирования уменьшается согласно заданному протоколу. В работе рассмотрено несколько приложений, в которых метод SQA позволяет значительно ускорить поиск основного состояния системы (т.е., глобального минимума энергии) за счет квантово-механического туннелирования между метастабильными состояниями (т.е., локальными минимумами).