Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Департамент электронной инженерии создан в 2015 году. В научной деятельности мы ориентированы на поиск наиболее эффективных инженерных решений в области электроники и наноэлектроники, физики конденсированного состояния, инфокоммуникационных устройств и систем связи, интеллектуального управления техническими системами. Мы участвуем в реализации образовательных программ для приоритетных направлений развития науки, технологий и техники в России:
79 бюджетных мест
15 платных мест
2 платных места для иностранцев
Иностранным абитуриентам на программе доступны как бюджетные (стипендии Правительства РФ для иностранных граждан), так и платные места
80 бюджетных мест
65 платных мест
2 платных места для иностранцев
Иностранным абитуриентам на программе доступны как бюджетные (стипендии Правительства РФ для иностранных граждан), так и платные места
Под редакцией: И. А. Иванов
Ассоциация выпускников и сотрудников ВВИА им. проф. Жуковского, 2024.
Aushev T., Bodrov D., Pakhlov P. et al.
Chinese Physics C. 2025. Vol. 49. No. 1. P. 013001-013001.
Aimagambetova R., Mekhtiyev A., Stukach O.
In bk.: 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics). International scientific and technical conference Omsk State Technical University, Omsk, Russia 12-14 Nov. 2024. NY: IEEE Advancing Technology for Humanity, 2024. Ch. 1. P. 1-8.
Sergeev A., Minchenkov V., Солдатов А. В. et al.
arxiv.org. Computer Science. Cornell University, 2025. No. 2501.13671.
На семинаре были представлены доклады по материалам диссертационных исследований, выполняемых аспирантами МИЭМ. Научный руководитель - Гольцман Григорий Наумович, д.ф.-м.н., профессор.
1. Технология создания микрополосковых резонаторов на основе сверхтонких сверхпроводящих пленок
- Давыдченко Михаил Александрович
Представлены данные о полосе преобразования металлического болометра на основе пленки Nb, осажденной поверх Sp подложки, способного работать в широком диапазоне температур от 77 до 300 К. Выбор комбинации Nb/Sp, обусловлен хорошей теплопроводностью интерфейса пленка/подложка в этой паре и достаточным температурным коэффициентом сопротивления, который определяет чувствительность детектора.
2. Экспериментальное исследование зонной структуры одиночных углеродных нанотрубок в неравновесных системах
- Матюшкин Яков Евгеньевич
Представлены результаты последних экспериментов по взаимодействию одиночных углеродных нанотрубок с циркулярно поляризованным терагерцовым излучением. Существуют теоретические работы, в которых описывается резонансный фотоотклик, связанный с интерференцией плазменных волн в полевых транзисторах на основе графена. В проведенном эксперименте также наблюдалась интерференция плазменных волн в коммерчески доступном графене, но плазменные волны в нем быстро затухали, из-за чего детектор работал в нерезонансном режиме. Грубые оценки по модели Друде показывают, что время релаксации, а, следовательно, и длина затухания плазменных волн в одиночных трубках на порядок выше, чем в графене. Кроме того, существует множество работ, в которых демонстрируется фотоотклик в полевых транзисторах на основе углеродных нанотрубок. Вышеизложенное побудило нас исследовать фотоотклик полевых транзисторов на основе одиночных УНТ на циркулярно поляризованное ТГц излучение разной хиральности. Модель Качаровского предсказывает, что в транзисторных детекторах с асимметричной антенной фотоотклик на циркулярно поляризованное излучение разной хиральности должен сильно отличаться (вплоть до смены знака) при легировании канала транзистора электронами (это связано с интерференцией плазменных волн). Нам удалось экспериментально продемонстрировать этот эффект, потдвердить модель, и показать, что УНТ можно использовать для поляризационно- и фазо- чувствительного детектирования ТГц излучения.
3. Квантовая томография сверхпроводникового однофотонного детектора
- Полякова Маргарита Игоревна
Функциональность сверхпроводниковых однофотонных детекторов (SSPD) основана на локальном подавлении сверхпроводящего параметра порядка при поглощении фотонов, вызывая изменение сопротивления, которое может быть преобразовано в записываемый сигнал электрического напряжения. Горячие пятна, возникающие в результате поглощения фотонов, являются ключевым звеном в работе SSPD. В работе представлен протокол квантовой томографии детектора, позволяющий без неоднозначности измерить эффективность двухпятенного обнаружения и извлечь длину взаимодействия горячих пятен сверхпроводникового однофотонного детектора с внутренней эффективностью обнаружения, равной единице. Также идентифицируется значительный паразитный вклад в измеренную двухпятенную эффективность, связанный с эффектом схемы смещения, и показан способ исключения этого вклада во время постобработки данных и непосредственно в эксперименте.