Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Адрес: 123458, Москва,
ул. Таллинская, д. 34., каб. 809
Телефон: (495) 772-9590 *15125
The sandpile cellular automata, despite the simplicity of their basic rules, are adequate mathematical models of real-world systems, primarily open nonlinear systems capable to self-organize into the critical state. Such systems surround us everywhere. Starting from processes at microscopic distances in the human brain and ending with large-scale water flows in the oceans. The detection of critical transitions precursors in sandpile cellular automata will allow progress significantly in the search for effective early warning signals for critical transitions in complex real systems. The presented paper is devoted to the detection and investigation of such signals based on multifractal analysis of the time series of falls of the cellular automaton cells. We examined cellular automata in square lattice and random graphs using standard and facilitated rules. It has been established that log wavelet leaders cumulant are effective early warning measures of the critical transitions. Common features and differences in the behavior of the log cumulants when cellular automata transit into the self-organized critical state and the self-organized bistability state are also established.
Рассмотрено течение вязкой жидкости вдоль полубесконечной пластины с малыми периодическими неровностями на поверхности при больших значениях числа Рейнольдса. Течение вблизи пластины описывается уравнениями Прандтля с индуцированным давлением, которые не являются классически ми уравнениями в частных производных, поскольку содержат предельный член. Основная цель данной работы — построение алгоритма численного решения этих уравнений с периодическими граничными условиями. Приведены результаты численного моделирования течения.