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* - What is THz radiation?
- THz Detectors. Why graphene based?

* 2. The main mechanisms of THz radiation detection by graphene-based FET
devices.
. ﬁBN THz detection using FETs based on double layer graphene incapsulated in

* - Broadband detection
* - Resonant detection
» - THz spectroscopy of plasmons in graphene

e 4, Conclusions
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Problems:
* Modern THz radiation detectors either operate at low temperatures or are quite slow;

* Itis necessary to develop new methods and approaches for detecting THz radiation.
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Detectors.

Why nanosturtures:
-Sensitive

- Fast

- Energy efficient

- Spectral sensitive
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Detectors. Why graphene (CNT) based:

-Gapless graphene has strong interband absorption

at all frequencies

- High room-temperature mobility

-Geometric control of the band structure
- Easy to fabricate
- The frequency of graphene plasma waves lies in
the terahertz range
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MOTIVATION
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MOTIVATION

Detectors. Why graphene (CNT) based:
-Gapless graphene has strong interband absorption
at all frequencies
- High room-temperature mobility
-Geometric and electrostatic control of the band
structure
- Easy to fabricate
- The frequency of graphene plasma waves lies in
the terahertz ranoce
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MOTIVATION

Plasmonics forms a major part of the fascinating field of
nanophotonics, which explores how electromagnetic fields can
be confined over dimensions on the order of or smaller than the

wavelength.

Plasmonics: Fundamentals and Applications
Authors: Maier, Stefan Alexander

Springer, 2007

Detectors. Why graphene (CNT) based:
-Gapless graphene has strong interband absorption
at all frequencies
- High room-temperature mobility
-Geometric control of the band structure

- Easy to fabricate



What do we mean by graphene THz detector
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The main mechanisms of THz radiation detection by graphene-based FET devices

Photovoltaic Photo-thermoelectric Bolometric Dyakonov-Shur

Current due to built-in Voltage due to Resistance change Formation of

field at the junction OR temperature gradients due to standing plasma
rectification due to  in nonuniformly doped overall device heating Wwaves in the device
diode nonlinearity channel channel

Figure from: F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini,
“Photodetectors based on graphene, other two-dimensional materials and hybrid
systems” Nature nanotechnology, 9, 780-793 (2014)



Photo-thermoelectric effect in graphene

In case of a photothermoelectric effect an non-uniform doping of the channel and non-uniform heating of
the channel results in onset of a DC voltage proportional to increase of the electron temperature

suspended graphene photocurrent 40
pn device ', 1AV

Calculation

microwave

Experiment |

45V (V) 15

Graphene advantages for hot-electron photothermoelectric
detection:

Photo-thermoelectric effect
o-Gapless graphene has strong interband absorption at all
frequencies.
o-The electronic heat capacity of single-layer graphene is much U= —j SdT =S(T' =T )
lower than in bulk materials, resulting in a larger change in
temperature for the same a‘psorbed energy _ n2kET 1 do
o- The photothermoelectric effect has a picosecond response S = — -
time, set by the electron— phonon relaxation rate

Nano Lett. 16, 6988 (2016)
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Photo-thermoelectric effect in graphene

Graphene photothermoelectric detector.
Principle of operation
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Graphene photothermoelectric detector device fabrication and principle of operation. (a-e)
Lithographic sequence used to produce the graphene terahertz detector.(f) Optical micrograph
showing electrical contacts and (inset) atomic force micrograph showing bimetallic contacts
connected to an exfoliated graphene layer. (g-k) Schematic of the principle components during
device operation. (g) Cross-sectional view of the device. (h-j) Profiles across the device of (h)
electron temperature T(x), (i) Fermi level EF(x), (j) Seebeck coefficient S(x) and (k) potential

“fdture Nanotechnology 9, 814-819 (2014)
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Broadband thermoelectric responsivity of graphene
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a function of gate voltage for the device shown in Fig. 1f at room
temperature and in ambient environment.
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Experiment: GaAs high-mobility FETs
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(2012) (2014) (2015)
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Measured responsivities of graphene-based THz detectors vs. gate voltage obtained by various
groups to date. In all setups, THz radiation if fed between source and gate, the signal is read out
between source and drain
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Resonant terahertz detection using graphene plasmons

There are three crucial steps to consider in the design of resonant
photodetectors.

First, the incoming radiation needs to be efficiently compressed
into plasmons propagating in the FET channel.

Second, the channel should act as a high-quality plasmonic cavity, -
where constructive interference of propagating plasma waves /
leads to the enhancement of the field strength.

Third, the high-frequency plasmon field needs to be rectified into
a dc photovoltage.
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Broadband detection
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Broadband detection
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Photoresponse of a dual-gated BLG detector. a, Two-terminal resistance as a function of Vtg
measured in a dual-gated BLG FET for different Vbg. Top inset: Schematic of a dual-gated THz
detector. Bottom inset: Optical photographs of the device. b, Responsivity as a function of Vtg
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Resonant detection
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Resonant detection
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Resonant detection

Theoretical responsivity of our FET as a plasmonic Fabry-Perot cavity R, = 0 D
endowed with a rectifying element : 11— rgrqeta|
where Ry is a smooth function of carrier density n and frequency f that depends on the
microscopic rectification mechanism, r,and rq are the wave reflection coefficients from the

source and drain terminals, respectively, and g is the complex wave vector governing the wave
propagation in the channel

T
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THz plasmon spectroscopy at 10 K

The resonant gate-tunable response of our detectors offers a convenient tool to characterize
plasmon modes in graphene channels
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THz plasmon spectroscopy at 10 K

Theoretical responsivity of our FET as a plasmonic Fabry-Perot cavity R, = 0 TP
endowed with a rectifying element : |11 = rrgedt|
where Rg is a smooth function of carrier density n and frequency f that depends on the
microscopic rectification mechanism, r,and rq are the wave reflection coefficients from the

source and drain terminals, respectively, and q is the complex wave vector governing the wave
propagation in the channel

~1/2
Plasmon lifetime: 61{9 — 1
Vg —1/2 WTy

- AR,/Z
a 01 — b 12 Clili 15
09} 11
0.0 v | B ol 8 o
L4 S
12 0314 §+ et |,
'01 - | 00 1 1 1 1 0
0.3 0.6 0.9 L
V2(V172) Carrier density, n (102 cm?) ”

*NATURE COMMUNICATIONS | (2018) 9:5392 | https://doi.org/10.1038/s41467-018-07848-w



Conclusion

1. We have shown that high-mobility graphene FETs exploiting far-field coupling to incoming radiation
can operate as resonant THz photodetectors.

2. Our devices represent a convenient tool to study plasmons under conditions where other approaches
may be technically challenging. Due to their compact size and far-field coupling, our photodetectors
can easily be employed to carry out plasmonic experiments in extreme cryogenic environments and in
strong magnetic fields, as well in studies of more complex van der Waals heterostructures.
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