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ELECTRONICS TERAHERTZ PHOTONICS
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MOTIVATION

TERAHERTZ PHOTONICS

Detectors.

Why nanosturtures:
-Sensitive

- Fast

- Energy efficient
- Etc.

Detectors. Why graphene (CNT) based:

-Gapless graphene has strong interband absorption

at all frequencies

- High room-temperature mobility

-Geometric control of the band structure
- Easy to fabricate
- The frequency of graphene plasma waves lies in
the terahertz range
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MOTIVATION
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at all frequencies
- High room-temperature mobility
-Geometric control of the band structure
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MOTIVATION

Plasmonics forms a major part of the fascinating field of
nanophotonics, which explores how electromagnetic fields can
be confined over dimensions on the order of or smaller than the

wavelength.

Plasmonics: Fundamentals and Applications
Authors: Maier, Stefan Alexander

Springer, 2007

Detectors. Why graphene (CNT) based:
-Gapless graphene has strong interband absorption
at all frequencies
- High room-temperature mobility
-Geometric control of the band structure

- Easy to fabricate



What do we mean by graphene THz detector
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The main mechanisms of THz radiation detection by graphene-based FET devices
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Figure from: F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini,
“Photodetectors based on graphene, other two-dimensional materials and hybrid
systems” Nature nanotechnology, 9, 780-793 (2014)



Two types of asymmetric graphene based structures

Asymmetric metallization Dyakonov — Shur configuration
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Photo-thermoelectric effect in graphene

In case of a photothermoelectric effect an non-uniform doping of the channel and non-uniform heating of
the channel results in onset of a DC voltage proportional to increase of the electron temperature
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Graphene advantages for hot-electron photothermoelectric detection:

o-Gapless graphene has strong interband absorption at all frequencies.

o-The electronic heat capacity of single-layer graphene is much lower than in bulk materials,
resulting in a larger change in temperature for the same absorbed energy

o- The photothermoelectric effect has a picosecond response time, set by the electron— phonon

relaxation rate

Nano Lett. 16, 6988 (2016)



Photo-thermoelectric effect in graphene
Graphene photothermoelectric detector.

Principle of operation
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Graphene photothermoelectric detector device fabrication and principle of operation. (a-e)
Lithographic sequence used to produce the graphene terahertz detector.(f) Optical micrograph
showing electrical contacts and (inset) atomic force micrograph showing bimetallic contacts
connected to an exfoliated graphene layer. (g-k) Schematic of the principle components during
device operation. (g) Cross-sectional view of the device. (h-j) Profiles across the device of (h)
electron temperature T(x), (i) Fermi level EF(x), (j) Seebeck coefficient S(x) and (k) potential
gradient

*Nature Nanotechnoloav 9. 814-819 (2014)
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photothermoelectric detector. (a,d) Electrical conductance, (b,e)
responsivity to Joule heating, and (c,f) responsivity to radiation as
a function of gate voltage for the device shown in Fig. 1f at room

temperature and in ambient environment.
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in conjunction with the continuity equation:

d[—en(x,t)] N dj(x,t) 0
ot dx

The total carrier density —en(x,t) is modulated by the gate voltage Vi (x,t
according to

—en(x,t)=CVq(x,t)

NATURE MATERIALS; VOL 11 ;0OCTOBER 2012



Graphene field-effect transistors as room-temperature terahertz detectors*
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2D FETs for THz detection: Graphene. Further research

Highest mobility devices probed in DS configuration
D. A. Bandurin, I. Gayduchenko, et al., 112, 141101, (2018)



2D FETs for THz detection: Graphene. Further research
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2D FETs for THz detection: Graphene. Further research
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2D FETs for THz detection: Graphene. Further research
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Heating-induced photoresponce
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Temperature evolution of responsivity is different for in case of PURE PTE accounting for
the p-n junction at the Ti-Graphene interface (simulations performed by D. Svintsov)
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where U, is the antenna voltage, L is the channel length, g(w) = (sinh?kL — sinkL)/
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Conclusions

 FET based on graphene encapsulated in hBN
can serve as high-responsivity THz detector

* Terahertz detection in graphene FETs is a
combination of resistive self-mixing,
photothermoelectric effects and p-n junction
rectification

 Hydrodynamics, strong electron-electron and
electron-hole scattering are good for
photodetection



