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Synchronization of conservative parallel discrete event simulations on a small-world network

Liliia Ziganurova* and Lev N. Shchur†

Science Center in Chernogolovka, 142432 Chernogolovka, Russia
and National Research University Higher School of Economics, 101000 Moscow, Russia

(Received 12 April 2018; published 21 August 2018)

We examine the question of the influence of sparse long-range communications on the synchronization in
parallel discrete event simulations. We build a model of the evolution of local virtual times in a conservative
algorithm including several choices of local links. All network realizations belong to the small-world network
class. We find that synchronization depends on the average shortest path of the network. The time profile dynamics
are similar to the surface profile growth, which helps to analyze synchronization effects using a statistical physics
approach. Without long-range links of the nodes, the model belongs to the universality class of the Kardar-Parisi-
Zhang equation for surface growth. We find that the critical exponents depend logarithmically on the fraction of
long-range links. We present the results of simulations and discuss our observations.
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I. INTRODUCTION

Progress in computation hardware in the last decade has
been mainly in the direction of multicore or distributed sys-
tems. It is a big challenge to use modern hardware effectively,
and creating a single program able to orchestrate a huge number
of nodes and cores is not trivial [1,2].

Here, we discuss the problem of synchronization within
one family of parallel simulations. The class of considered
systems comprises very many individual elements interacting
asynchronously with each other, and events occur at some
discrete instants. Simulating such systems using sequential
algorithms requires a vast amount of processing time and
memory. The method for simulating systems on parallel or
distributed computers, which allows implementing a faithful
synchronization, is called parallel discrete event simulation
(PDES) [3,4].

The simulation technique is used in many areas of physics;
examples include simulation of granular dynamics [5], kinetic
Monte Carlo simulations [6], and simulation of 3D sintering
[7]. It has proved to work on millions of cores [8].

It was shown in [9] that evolution of the simulated time
profile in PDES is analogous to the evolution of nonequilibrium
surface growth. A model of the time profile evolution was
proposed, and in the case where the processing elements
(PEs) communicate only with neighbors, such a model can
be mapped on the (1+1)-dimensional Kardar-Parisi-Zhang
(KPZ) equation [10]. This finding helps to understand the
synchronization problem in the language of statistical physics.
For example, (i) the positivity of the profile speed is mapped
on the property of deadlock absence, and (ii) the evolution
of the profile width, which is described with the KPZ critical
exponents, reflects the desynchronization of the PEs. Taking
these into account, we mainly use the language of statistical
physics instead of computational science in what follows.
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Assuming local communication between the PEs restricts
the model application to a relatively small number of ap-
plications. Generally, long-range communications between
processor elements do occur in simulations. It is reasonable
to investigate a more realistic link topology.

Here, we consider PDES on small-world (SW) networks
[11]. The current state of research with SW networks is
presented in Sec. III. The main topological feature of a SW
network is that for a relatively small number of long-range
links, the average distance changes from a linear to a log-
arithmic dependence on the system size [12]. Clearly, this
should drastically change the behavior of the whole system.
It was found in [13,14] that random long-range links between
PEs strongly influence synchronization properties and the
scalability of PDES. A synchronization scheme with additional
long-range links introduces a relaxation term in the evolution
of the virtual time profile. This term implies the absence of
large-amplitude long-wavelength modes [14] in the surface.
Consequently, the average width of the profile becomes finite,
while the average progress rate remains a nonzero constant in
the limit of infinite system size. In other words, (i) introducing
long-range links does not change the important property of
the local conservative algorithm, the deadlock absence; (ii) the
long-range links increases the synchronization of simulations.
It was also found that the average width in sufficiently large
systems is proportional to the correlation length ξ (p), and
ξ (p) ∼ p−0.84, where p is the probability of the long-range
interactions.

We construct the topology of the communications between
PEs in the framework of the SW approach [11]. The concen-
tration p of long-range communications is the main parameter
in our research. We find that the clustering coefficient value
does not qualitatively influence the development of surface
growth. The quantitative change of the rate of surface growth
and the surface width behavior is independent of the local
connectivity. For this, we analyze networks with only nearest
neighbors, with nearest and next-nearest neighbors, and so on.
We thus find some universal properties. Our main conclusion
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is that the average length of the network and number of local
connections govern the surface growth dynamics. The average
length is a function of the parameter p and is known to behave
logarithmically for values that are not too small. It is important
that we do not change the update scheme of the conservative
PDES algorithms as in the papers [13,14]. Our purpose is to
investigate how the SW topology of the communication links
influences the synchronization properties of PDES, i.e., the
statistical properties of the surface growth [15].

We build our model on two types of SW networks. Both
have a small average shortest path (the main criterion of
“small-worldness”). One SW realization has a zero clustering
coefficient (the second feature of SW networks [16] is a
nonzero clustering coefficient). We find that the average speed
profile decreases slowly as the parameter p increases and the
speed is always positive. The average profile width becomes
finite in the limit of an infinite system size in accordance with
the result in [14]. Another result here is an estimate of the
dependence of the growth exponent β on the SW parameter p:
the dependence is logarithmic.

This paper is organized as follows. In Sec. II, we describe
the conservative model for PDES [9]. Section III contains
a detailed description and an analysis of SW topologies. In
Sec. IV, we describe our one-dimensional SW scheme and
present the results. In Sec. V, we analyze the dependence of
the measured quantities on the number of local links. In Sec. VI,
we summarize our work and discuss the results.

II. BASIC CONSERVATIVE PDES SCHEME

Parallel discrete event simulation is a subclass of parallel
simulation where changes in the components of the system
from one state to another occur instantaneously. These changes
are called events. The system being simulated is divided
into disjoint subsystems. Subsystems are processed by PEs,
which are hardware-dependent and may be a computing node,
CPU, core, or thread. In the simplest case, each PE carries
only one site of the underlying system (e.g., one spin in a
magnetic model). The important feature of PDES is that the
PEs communicate with each other asynchronously and via
messages. Each PE progresses at its own pace and has its own
simulated time, also called the local virtual time (LVT) [17].
Different synchronization schemes are possible for preserving
the causality of computations [18]. We focus our discussion on
a conservative algorithm, which avoids the possibility of any
type of causality error by checking every causality relation at
each update attempt [3].

The model of the time profile evolution regards LVTs
as Poisson arrivals. In the basic one-dimensional case, the
network topology is a ring [9], and PEs hence interact only with
nearest neighbors. Let N be the number of PEs and t be the
number of parallel steps. The set of LVTs {τi (t )}Ni=1 constitutes
the virtual time profile. At each time step, only those PEs whose
LVTs are not larger than the LVTs of their nearest neighbors
may increment their LVTs by an exponentially distributed
random value. These PEs are said to be active. Otherwise, if
the LVT of a PE is larger than the LVT of some neighbor, this
PE is not updated and is said to be passive. The relative amount
of active PEs (those simulating system evolution) is called the

utilization

〈u(t, N )〉 =
〈
N (t )active

N

〉
(1)

and is an important characteristic of the evolution of the
LVT profile. The average 〈 · 〉 is taken over many independent
realizations. In the basic conservative scheme, the utilization
at the given instant is equal to the density of local minima of
the profile, Nmin/N . The value of the utilization can be used
as a measure of algorithm effectiveness.

The second important observable is the spread or width of
the LVT profile, defined as

〈w2(N, t )〉 =
〈

1

N

N∑
i=1

[τi (t ) − τ (t )]2

〉
, (2)

where τ (t ) = 1
N

∑N
i=1 τi (t ) is the mean height of the time

profile.
As the number of PEs in a parallel architecture increases

to hundreds of thousands, a fundamental question of the
scalability of the underlying algorithm emerges. To be scalable,
a PDES algorithm must have the following properties: (1) the
LVT profile should progress on average with a nonzero rate,
and (2) the width of the profile should be bounded by a constant
as the number of PEs goes to infinity. A PDES algorithm
is said to be fully scalable if both conditions are satisfied
[19]. It is interesting that the scalability of computations is
defined in the limit of an infinite system size. This is one more
analogy with the corresponding physical system for which the
thermodynamic limit is reached in the same limit.

We briefly recall the main results of a study of the basic
conservative scheme [9]. The LVT profile width increases with
time and then saturates to the steady-state regime after some
time t×. Before saturation, the width grows as 〈w2(t )〉 ∼ t2β ,
where β = 0.326(5). In the steady state, the width is stationary
and depends on the system size 〈w2

∞〉 ∼ N2α , α = 0.49(1).
The two values of the exponents α and β are close to those
of the KPZ universality class [10], α = 1/2 and β = 1/3. The
estimate of the utilization of the algorithm (measure of the
algorithm effectiveness) given in [18] is 〈u〉∞ = 0.246410(7).
Therefore, the basic conservative algorithm is computationally
scalable in one dimension because the average utilization is
greater than zero. But the width of the LVT profile diverges
as the number of nodes increases, which means that the PEs
became less synchronized. Therefore, the conservative PDES
algorithm is not fully scalable. In other words, the algorithm is
still applicable for any large system (it somehow progresses in
time with positive utilization) although it becomes less and
less effective as the number of PEs increases because the
PEs become more and more desynchronized as the simulation
progresses (the width of the time increases with the number of
PEs).

III. SMALL-WORLD NETWORKS

Small-world networks comprise a class of networks usually
characterized by a small average shortest path length and a
high degree of clustering. These properties are observed in
many real technological, biological, social, and information
networks. There is no rigid definition of “small-worldness,”
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FIG. 1. (a) A one-dimensional lattice with each site connected to
its 2k neighbors with periodic boundary conditions; in this case k = 2.
(b) The Watts and Strogatz model, where a small fraction of the links
are rewired to new sites chosen randomly, or R-k2 model.

and different criteria for classifying networks into regular, SW,
and random classes have been proposed during the last decade
[16,20–22].

For precision, we first give some basic definitions and
notations. We consider a one-dimensional lattice with periodic
boundary conditions, where each node is connected with 2k

neighbors [Fig. 1(a)]. We call two nodes neighbors if there is
an edge between them. The total number of nodes is denoted
by N . We also need a parameter p, which can be interpreted as
a degree of randomness. We consider two structural properties
of networks, the average shortest path and the clustering
coefficient.

There are several ways to construct networks with long-
range links. Given a one-dimensional lattice with each node
connected to 2k closest nodes [see Fig. 1(a)], each edge of the
graph is randomly rewired with probability p; i.e., one end of
the edge is moved to a node chosen at random from the rest of
the lattice nodes [see Fig. 1(b)]. Another way to build a network
is by adding links with probability p above the regular lattice
(see Fig. 2).

We conduct our study on three different networks based on
both constructions described above. For simplicity, we give a
short code names to the networks: “A (add) or R (rewrite)–
parameter k”. The construction algorithms are as follows:

FIG. 2. SW networks with each site connected to its 2k neighbors
and a small fraction of links added above the regular lattice with
periodic boundary conditions: (a) A-k1 and (b) A-k2.

(1) A-k1. (1) Start with a ring lattice with N nodes where
each node is connected to its k = 1 closest nodes. (2) Randomly
add exactly pN edges above the regular lattice [Fig. 2(a)].

(2) A-k2. (1) Start with a ring lattice with N nodes where
each node is connected to its k = 2 closest nodes [Fig. 1(a)].
(2) Randomly add exactly pN edges above the regular lattice
[Fig. 2(b)].

(3) R-k2. (1) Start with a ring lattice with N nodes where
each node is connected to its k = 2 closest nodes. (2) Ran-
domly choose exactly pN edges and rewrite them randomly
[Fig. 1(b)].

The parameter p thus can be regarded as the average number
of random long-range links per node.

A. Average shortest path

The average shortest path l(N,p) is defined as

l(N,p) = 1

N (N − 1)

∑
i �=j

dij , (3)

where dij is a chemical distance [23], the minimum number of
nodes between vertices i and j .

In regular lattices, the average shortest path grows linearly
with the system size:

l(N, 0) = N (N + 2k − 2)

4k(N − 1)
∼ N/4k.

For p = 1 the length l(N, 1) grows as

l(N, 1) ∼ ln(N )

ln(2k − 1)
.

For SW networks, we have the scaling relation [24,25]

l(N, k, p̃) = N

k
f ((p̃k)1/dN ), (4)

where d is a lattice dimension, p̃ = p/k is the concentration
of long-range links normalized with the number of local
connections, and f (x) is a universal scaling function,

f (x) =
{

const., if x � 1,

ln(x)/x, if x � 1.
(5)

The above relation indicates a crossover transition between
regular and SW networks. The number of rewired or added
links (pN ) must be small but finite. The regime with x =
pN � 1 is not easily attained in practice for networks of a
finite size N .

B. Clustering coefficient

The clustering coefficient C(p) quantifies a “cliquishness”
of a network. It is defined as follows. Let ci be the number
of neighbors of a node i. Node i can have at most ci (ci −
1)/2 possible links between all its neighbors. Let Ni be the
actual number of such links. Then the local clustering is Ci =
Ni/[ci (ci − 1)/2], and the clustering coefficient C(p) is the
average local clustering over all N nodes [23].

The clustering coefficient of a regular lattice is high: C(0) =
3(k − 1)/2(2k − 1). In contrast, random networks are not
clustered: Crand ∼ k/N . There are several analytic estimates
of the clustering coefficient of SW networks [16,23,26].
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FIG. 3. The clustering coefficient C(p) of SW networks as a
function of the parameter p̃ = p/k: triangles are A-k2, diamonds
are R-k2, the solid line indicates Eq. (6), the dotted line indicates
Eq. (7), and the dashed line indicates Eq. (8). Error bars are of the
symbol size.

For example, Barrat and Weight [23] derived expression (6)
for the clustering coefficient based on the reasoning that the
local clustering coefficient in the SW network remains the same
as in a regular lattice if all three edges connecting the node to
its two neighbors and the neighbors between themselves are
not rewired. This happens with probability (1 − p̃)3:

C(p̃) ≈ C(0)(1 − p̃)3. (6)

Watts in his book [16] used a more complex analysis of
clustering phenomena and derived his expression (7) via the
effective local degree and the effective global degree (for more
details, see Chap. 4 in the book [16]):

C(p̃) ≈
3
4 (1 − p̃)2

(
2k − 2

3

) − (1 − p̃)

2k − 1
. (7)

One more formula is Newman’s [26] equation

C(p̃) ≈ 3k(k − 1)

2k(2k − 1) + 8p̃k2 + 4p̃2k2
. (8)

In this formula, C(p) decreases slowly with p and hence
remains sufficiently high for a small number of long-range
links (Fig. 3). These three formulas are derived for the SW
networks constructed by rewiring links; it is R-k2 in our case.
It is seen from Fig. 3 that the clustering coefficient for the
network A-k2 follows the formulas only for a very small value
of p. For a SW network A-k1 with p = 0, we have C(0) = 0.
Adding long-range links increases the probability of a nonzero
clustering coefficient in such a network, namely, the clustering
coefficient C(p) ∼ p/N2 for A-k1.

The informal SW definition at the beginning of this section
can now be formulated more precisely: “a SW graph is a
large-N , sparsely connected, decentralized graph (N � k �
1) with a characteristic path length close to that of an equivalent
random graph (l ≈ lrand) but with a much greater clustering
coefficient (C � Crand)” [27].

To ensure that the constructed networks are indeed SW
networks, we analyze the dependence of the average shortest
path length l on the parameter p and the system size N . We

FIG. 4. The average shortest path as a function of the number of
nodes for SW networks for p = 0.002: circles are A-k1, triangles are
A-k2, diamonds are R-k2, and dashed lines indicate fit functions.

find that l depends logarithmically on N for all p > 0 for all
networks (Fig. 4). Scaling relation (4) is also observed in our
data. We plot the average shortest path as a function of the
parameter p for the network of size N = 105, and it is well
approximated (see Fig. 5) by

l = A
ln(pN )

pk
+ D. (9)

We also calculate clustering coefficients in our models. For
the network A-k1, C(p) ≈ 0. Strictly speaking, this model
does not fully satisfy the criteria for SW networks. For the
networks A-k2 and R-k2, we plot C(p) and compare the results
with different analytic estimates (Fig. 3). The agreement is
good for small p (p < 0.01), and the clustering coefficient for
A-k2 and R-k2 is close to C(0), which equals 1/2 for k = 2.

FIG. 5. The average shortest path length as a function of the
parameter p for systems of size N = 105: circles are A-k1, triangles
are A-k2, diamonds are R-k2, and dashed lines indicate fit functions
of form (9) in all three cases. Error bars are of the symbol size.
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IV. SMALL-WORLD SYNCHRONIZATION SCHEME

A. Model of time evolution in the conservative algorithm

The key property of the conservative synchronization
scheme for PDES is the preservation of causality. In the
general case, causality is defined in terms of the dependency
matrix with elements D(i, j ), where D(i, j ) = 1 if the process
simulated by PEi depends on PEj , and D(i, j ) = 0 otherwise.
Causality is preserved if the local virtual time (LVT) of PEi is
lower than LVT of those PEj on which PEi depends.

The time evolution begins with a flat profile τi (0) = 0, i =
1, 2, . . . , N . To preserve causality, we randomly update those
LVTs of PEs that are lower than LVTs of the PEs on which they
depend, i.e., using links defined by the dependency matrix D.
This leads to the rule

τi (t + 1) =
{

τi (t ) + ηi, if τi (t ) � {τj (t )}D(i,j )=1,

τi (t ), otherwise,
(10)

whereηi is a random value drawn from the Poisson distribution,
and {τj (t )}D(i,j )=1 is the set of all local times of the PEs
connected to PEi by local or long-range communication links,
i = 1, 2, . . . , N .

As is known, the model on the regular one-dimensional
lattice belongs to the KPZ universality class [9]. This can be
seen by the following reasoning. First, we represent Eq. (10)
in the form

τi (t + 1) = τi (t ) + �[τi−1(t ) − τi (t )]

×�[τi+1(t ) − τi (t )]ηi (t ), (11)

neglecting long-range links and using the Heaviside step
function �.

Second, replacing differences between local times with the
local slope

φi = τi − τi−1, (12)

we obtain the equation for the density of local minima (or the
utilization):

u(t ) = 1

N

N∑
i=1

�[−φi (t )]�[φi+1(t )]. (13)

It was shown in [28] that there is a finite-size correction to
the growth rate. The finite-size behavior of the average profile
speed is

〈u(N )〉 
 〈u(∞)〉 + const.

N2(1−α)
, (14)

where 〈u(∞)〉 is the value of the average speed in the asymp-
totic infinite number of PEs and α is the roughness exponent.
Equation (14) is confirmed by simulating LVT profile growth.
For the KPZ model 〈u(∞)〉 = 1/4, while in the model of
evolution of the LVT profile, 〈u(∞)〉 ≈ 0.24641. This is due
to nonuniversal short-range correlations between the slopes in
the profile.

The average speed depends weakly on the type of distri-
bution of the random variable ηi . For p = 0, it was shown
in [18] that the average speed 〈u〉U = 0.267(4) for a uniform
distribution of ηi , 〈u〉G = 0.258(5) for a Gaussian distribution
of ηi , and 〈u〉 = 0.246410(7) for a Poisson distribution of ηi .

It was argued by Korniss et al. [9] that the coarse-grained
slope φ̂(x, t̂ ) of the time horizon in the continuum limit is
evaluated according to the Burgers equation [10]

∂φ̂

∂t̂
= ∂2φ̂

∂x2
− λ

∂φ̂2

∂x
(15)

and the coarse-grained time profile τ̂ , φ̂ = ∂t̂/∂x satisfies the
KPZ equation

∂τ̂

∂ t̂
= ∂2τ̂

∂x2
− λ

(
∂τ̂

∂x

)2

, (16)

which should be extended with noise to capture the fluctua-
tions.

We can expect that the evolution of the time profile belongs
to the KPZ universality class. Numerical analysis [9,18] sup-
ports this expectation. In the case of long-range links, we can
expect deviation from KPZ universality class.

In the case of long-range links, we can rewrite Eq. (11) as

τi (t + 1) = τi (t ) + �[τi−1(t ) − τi (t )]�[τi+1(t ) − τi (t )]

×
∏

{D′(i,j )=1}
�[τj (t ) − τi (t )]ηi (t ), (17)

where the product is computed only for long-range links
coming from the node PEi , which is denoted by the prime
in {D′(i, j ) = 1}. The average time profile speed in this case
is

〈u(t )〉 =
〈
�[−φi (t )]�[−φi+1(t )]

∏
{D′(i,j )=1}

�[φ̃j (t )]

〉
, (18)

where φ̃j (t ) = τj − τi . It is clear from Eq. (18) that additional
dependencies decrease the LVT profile speed. In other words,
adding long-range links decreases the utilization. Simulations
confirm this observation.

B. Simulations

The simulation parameters are the number N of PEs, the
concentration p of long-range links per PE, and the number t of
discrete simulation steps. The matrix D is randomly initialized
with one of the construction algorithms described in Sec. III.

The average speed 〈u〉 and the average profile width 〈w2〉 are
calculated after each update using the respective expressions
(1) and (2). For each set of parameters N and p, we use 1500
different realizations of the random process running in parallel.
The parameter p changes from 0.002 to 0.1, and the number
N of PEs ranges from 103 to 105.

1. Average speed

Figure 6 shows the dependence of the average speed 〈u〉 on
the concentration p for three realizations of the SW networks
A-k1, A-k2, and R-k2: they are the respective networks with
two closest neighbors and pN randomly added links, with four
closest neighbors and pN randomly added links, and with four
closest neighbors and pN randomly rewired links.

It can be seen in Fig. 6 that the average speed 〈u〉 decreases
as the concentration p increases and is smaller for the networks
A-k2 and R-k2 because of the dependence on the next-nearest
neighbors. Strictly speaking, we should rewrite Eqs. (17) and
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(a) A–k1

(b) A–k2

(c) R–k2

FIG. 6. The average speed 〈u〉 as a function of the concentration p

of long-range links for different number of PEs: circles for N = 103,
triangles for N = 104, and diamonds for N = 105. Error bars are of
the symbol size. The speed is averaged over time with the first 1000
time steps omitted.

FIG. 7. Comparison of the average speeds 〈u〉 on three network
realizations: circles for A-k1, triangles for A-k2, and diamonds for
R-k2 for N = 105. Error bars are of the symbol size.

(18) in this case as

τi (t + 1) = τi (t ) + �[τi−1(t ) − τi (t )]�[τi+1(t ) − τi (t )]

×�[τi−2(t ) − τi (t )]�[τi+2(t ) − τi (t )]

×
∏

{D′(i,j )=1}
�[τj (t ) − τi (t )]ηi (t ). (19)

Using Eq. (12), we obtain the expression for the average profile
speed on the network A-k2:

〈u(t )〉 = 〈�[−φi (t )]�[φi+1(t )]

×�[−φi−1(t ) − φi (t )]�[φi+2(t ) + φi+1(t )]

×
∏

{D′(i,j )=1}
�[φ̃j (t )]〉. (20)

The presence of next-nearest neighbors reduces the average
speed 〈u〉, and the average speed 〈u0〉 = 0.14674(7) for p = 0.
It can be seen that the speed remains positive for small
concentrations p, which means that the SW-synchronized
simulation scheme maintains a nonzero average utilization. For
example, we have 〈u〉 = 0.221370(7) in A-k1 for p = 0.01
and 〈u0〉 = 0.246410(7) for p = 0. It is seen from Fig. 6 that
the average speed 〈u〉 is hardly different for N = 104 and
N = 105.

Figure 7 shows the difference of the average speed depend-
ing on the SW network realization in the systems of N = 105

PEs. For small values of the parameter p, the difference
between the average speed on the network A-k1 and networks
A-k2 and R-k2 is significant. This is expected from Eqs. (18)
and (20). In the latter equation, the additional terms slow the
interface growth speed.

For p close to unity, the average speeds on the networks A-
k1 and R-k2 are approximately the same. This can be explained
by comparing the average number of dependencies in these
networks. For p = 1, the network A-k1 has N (1+p) = 2N

links between the PEs, and the network R-k2 also has 2N links.
We can conclude that the average speed of the LVT profile on
SW networks mainly depends on the number of links in the
communication network.
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FIG. 8. The difference between the speeds �u = 〈u〉 − 〈u0〉 as
a function of the concentration p of long-range links for N = 105

for three network realizations: circles for A-k1, triangles for A-k2,
diamonds for R-k2, and dashed lines for fit (21). Error bars are of the
symbol size.

The dependence of the average speed 〈u〉 on the parameter
p is nonlinear. Let �u be the difference between the average
speed 〈u〉 on a SW network and the average speed 〈u0〉 on a
regular lattice:

�u = 〈u0〉 − 〈u〉.
The difference �u between the speeds is well approximated
by a power-law function (Fig. 8):

�u(p,N ) ∼ pB(N ). (21)

The values of the exponent B(N ) are given in Table I. It can
be seen from the table that the exponent B(N ) decreases with
the number of PEs. Figure 9 shows the exponent B(N ) for three
SW network realizations. We find the asymptotic behavior of
B(N ) in the limit of a large number of PEs by approximating
with the function

B(N ) ≈ B + A
ln N√

N
. (22)

In the limit as N → ∞, the exponent B(N ) approaches the
values B = 0.306(4) for the network A-k1, B = 0.439(2) for
the network A-k2, and B = 0.450(2) for the network R-k2.

The behavior of the average speed in all three cases is
not universal. The exponents B in the last two networks are
very close to each other but differ from the exponent B in the
network A-k1. This is probably due to the topological differ-
ences between the networks. The most significant topological

TABLE I. Exponent B [see Eq. (21)] for three realizations of the
SW networks and for different numbers N of PEs.

N A-k1 A-k2 R-k2

103 0.509(2) 0.613(4) 0.62(1)
104 0.407(4) 0.508(1) 0.515(2)
105 0.344(7) 0.467(4) 0.472(8)
∞ 0.306(4) 0.439(2) 0.450(2)

FIG. 9. The exponent B as a function of the number N of PEs
for three network realizations: circles for A-k1, triangles for A-k2,
diamonds for R-k2, and dashed lines for fits (see discussion in the
text). Error bars are of the symbol size.

difference between the network A-k1 and the networks A-k2
and R-k2 is the presence of clustering. The network A-k1 has
a zero clustering coefficient, while the other two networks are
highly clustered. We can also conclude that the particular way
the SW topology is constructed (by either adding or rewiring
links) does not play an important role. More investigations
should be done with more networks of different topologies for
the detailed classification of system behavior.

2. Average profile width

Figure 10 shows the time dependence of the average width
〈w2〉 for three SW network realizations with N = 104 PEs. It
can be seen that the profile width grows exponentially with
time,

〈w2(t )〉 ∼ t2β, (23)

and saturates after a time t×. The larger the value of p is, the
slower the width grows, and the lower the saturation value
〈w2

∞〉 is. The width saturates much earlier in the presence of
long-range links than in the case p = 0. The width saturates
after a sufficiently large time t× ≈ 106 on a regular lattice of
size N = 104 [9] and after a time t× < 104 on SW networks,
even for a very small concentration p.

It can also be seen from Fig. 11 that the growth exponent
β for systems with sufficiently many PEs (N > 2 × 103) be-
comes constant and independent of N . We find the asymptotic
values of β as N → ∞ using an approximation with power-
law corrections. The values of β for systems on three SW
realizations and various values of the parameter p are listed
in Table II. Clearly, the growth exponent β decreases as the
concentration p increases.

Figure 12 shows the exponent β as a function of the
parameter p. We find that for p > 0, the exponent β depends
logarithmically on the concentration p:

β(p) ∼ − ln(p). (24)

It is important that change of the exponent β from SW
lattices to regular lattices is singular, as can be seen from
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(a) A–k1

(b) A–k2

(c) R–k2

FIG. 10. The average width 〈w2〉 as a function of time for the
system size N = 104 and different values of the parameter p: the
average is taken over 1500 independent runs. The black dotted line
corresponds to p = 0 (KPZ universality class), and the solid lines
correspond to different values of parameter p > 0. The order of solid
lines from top to bottom corresponds to the figure legend.

(a) A–k1

(b) A–k2

(c) R–k2

FIG. 11. The growth exponent β as function of the system size N :
the values of p change from top to bottom: 0.002, 0.004, 0.006, 0.008,
0.01, 0.02, 0.04, 0.06, 0.08, 0.1; the dashed line with solid squares
corresponds to the regular network with p = 0. Error bars are of the
symbol size.
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TABLE II. Dependence of the exponent β on the concentration p

of long-range links.

p A-k1 A-k2 R-k2

0 0.33280(4) 0.333(4) 0.333(4)
0.002 0.833(3) 0.629(6) 0.547(6)
0.004 0.756(3) 0.511(5) 0.43(2)
0.006 0.699(2) 0.439(8) 0.371(9)
0.008 0.649(2) 0.38(1) 0.321(3)
0.01 0.617(4) 0.343(4) 0.293(6)
0.02 0.4949(8) 0.232(3) 0.191(4)
0.04 0.3783(7) 0.144(1) 0.124(2)
0.06 0.312(1) 0.1106(8) 0.101(2)
0.08 0.2646(8) 0.093(1) 0.0836(3)
0.1 0.2341(3) 0.0791(5) 0.0745(2)

Table II. Even a very small value of p changes the exponent
dependence from 1/3 to − ln(p).

For each set of parameters N and p, we measure the
saturation value 〈w2

∞(N,p)〉 of the width by averaging the
width over times t � tx . Figure 13 shows the steady-state
width 〈w2

∞〉 as a function of the number N of PEs for different
concentrations p. In the case p = 0, the steady-state width
scales as 〈

w2
∞

〉 ∼ N2α, (25)

where α is the roughness exponent, approximately equal to 1/2
(KPZ universality class).

In contrast to expression (25), the average width on
SW networks does not increase with the number of PEs,
〈w2

∞(N )〉 = constant, i.e., the roughness exponent α = 0. The
asymptotic values of 〈w2

∞〉 in the limit of infinitely many PEs
for all three SW network realizations and different values of
the parameter p are shown in Table III. The average LVT
profile width 〈w2

∞〉 decreases as the parameter p increases.

FIG. 12. The exponent β as a function of the concentration p: the
solid line shows the value β = 1/3, the dashed lines are results of the
fitting, circles correspond to A-k1 with the fit β ∼ −0.311(2) ln(p),
triangles correspond to A-k2 with the fit β ∼ −0.179(2) ln(p), and
diamonds correspond to R-k2 with the fit β ∼ −0.161(3) ln(p). Error
bars are of the symbol size.

(a) A–k1

(b) A–k2

(c) R–k2

FIG. 13. The average steady-state width as a function of the
number N of PEs. Dashed line corresponds to p = 0. The order of
solid lines from top to bottom corresponds to the figure legend.

Therefore, desynchronization is finite, and its value decreases
as p increases.

It can also be seen from Fig. 13 that the saturation value
〈w2

∞〉 is one order of magnitude less on the SW networks
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TABLE III. Steady-state width 〈w2
∞〉 for various SW network

realizations.

p A-k1 A-k2 R-k2

0 ∼N ∼N ∼N

0.002 2401±687 107(5) 76(3)
0.004 1092±295 40(3) 25.1(8)
0.006 537±203 20.8(6) 15.3(7)
0.008 273±45 13.3(3) 11.1(4)
0.01 151±5 10.7(7) 8.3(1)
0.02 46±3 4.88(8) 4.26(6)
0.04 16.7±0.7 2.81(1) 2.69(2)
0.06 9.4±0.2 2.22(1) 2.201(8)
0.08 6.70±0.07 1.951(4) 1.943(6)
0.1 5.18±0.05 1.783(5) 1.827(8)

A-k2 and R-k2 than on the network A-k1. The reason is
that additional dependencies in the system cause additional
synchronization between PEs.

For large p, the average LVT profile width 〈w2
∞〉 on systems

with various numbers of PEs has approximately the same small
value (Fig. 14). A small average width indicates that PEs are
well synchronized, but the utilization (average speed) is low in
this case. This indicates that there is some tradeoff between
synchronization and utilization, and a compromise can be
achieved with a suitable rearrangement of the communication
network.

Figure 15 shows the collapse of the curves with a normalized
average width 〈w2

∞〉/N as a function of the normalized long-
range links pN . The data collapse is good for the networks
A-k2 and R-k2 but rather poor for the network A-k1. This is
another argument that clustering affects properties of the LVT
evolution model for small p.

V. DEPENDENCE ON THE LOCAL CONNECTIVITY

Real systems in the natural sciences often have large values
of k. In this section, we demonstrate how our results are
sensitive to the variation of k. We present a comparative
study of the network properties and PDES behavior for one-
dimensional networks with the number of neighbors varying
from 2 to 16, i.e., for k = 1, 2, 4, 8. In our classification (see
Sec. III), they are respectively called A-k1, A-k2, A-k4, and
A-k8.

The variation of the clustering coefficient with the con-
centration p of long-range links is shown in Fig. 16. It can
be seen that values of the normalized clustering coefficient
coincide well for the networks A-k2, A-k4, and A-k8 [we
recall that the value of the clustering coefficient C(0) for the
network A-k1 is zero]. For comparison, we plot the variation
of the clustering coefficient for the network R-k2 and the
corresponding approximation (8).

The average shortest path l is shown in Fig. 17 as a function
of the concentration of long-range links and in Fig. 18 as a
function of the system size. In all cases, the behavior of l for
the presented range of p and N is well approximated by Eq. (9).
It is interesting that the resulting fit in the values of A varies
slightly around the value A = 0.30(1) and the values of D are

(a) A–k1

(b) A–k2

(c) R–k2

FIG. 14. The average steady-state width 〈w2
∞〉 as a function of

the parameter p. The order of lines from top to bottom corresponds
to the figure legend.

practically the same, D = 7.7(1), for all investigated networks
except A-k1, for which D is much smaller, D = 6.1(2).

Simulation of the PDES on the SW networks with different
k leads to some interesting observations. First, we found that
the average speed 〈u〉of the time profile can be collapsed on one
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(a) A–k1

(b) A–k2

(c) R–k2

FIG. 15. The steady-state width 〈w2
∞〉 normalized on N as a

function of the number pN of added or rewired links. The order
of lines from top to bottom corresponds to the figure legend.

curve as a function of the concentration p. Figure 19 clearly
shows a good data collapse for 〈u〉 for the networks A-k2,
A-k4, and A-k8 and rather poor collapse for the network A-k1.
Hence, a zero value of the clustering coefficientC(0) selects the
network A-k1 as a special case, while networks with a nonzero
value of C(0) demonstrate a universal behavior. Values of 〈u0〉,

FIG. 16. The normalized clustering coefficient of SW networks
as a function of the parameter p̃ = p/k: triangles are A-k2, circles
are A-k4, squares are A-k8, diamonds are R-k2, and the dashed line
is Eq. (8). Error bars are of the symbol size.

i.e., the average speed on the time profile for the network
with p = 0, are presented in Table IV. Another interesting
observation is that 〈u0〉 scales with k as 〈u0〉 ∝ k−0.84(1). The
data collapse shown in Fig. 19 can therefore be treated in the
rescaled variables (〈u〉 k0.84) and (p/k).

The data collapse is even more nicely visible for the function
�u normalized by dividing by u0 (or, equivalently, multiplied
by k0.84) as shown in Fig. 20. Therefore, the exponent B given
by expressions (21) and (22), which characterize the behavior
of �u ∝ pB for small values of p, indeed seems universal for
k = 2, 4, and 8 with B ≈ 0.44(1).

The behavior of the average width on regular (p = 0)
lattices A-k1, A-k2, A-k4, and A-k8 demonstrates the same
behavior with the growth exponent of the KPZ universality
class 2β = 2/3 as shown in Fig. 21. The larger the value of k

is, the longer the time required for entering the scaling regime.

FIG. 17. The average shortest path l as a function of the parameter
p for systems of size N = 105: stars are A-k1, triangles are A-k2,
circles are A-k4, squares are A-k8, and dashed lines indicate fits using
Eq. (9). Error bars are of the symbol size.
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FIG. 18. The average shortest path l as a function of the number
of nodes for SW networks for p = 0.002: stars are A-k1, triangles are
A-k2, circles are A-k4, squares are A-k8, and dashed lines indicate
fits using Eq. (9).

Estimates of the values of β as a function of p are presented
in Table V. It can be seen that attaining the scaling regime t2/3

for p = 0 is shifted to the larger network sizes.
In another words, translating our findings into computer

science terms, larger values of k work in different directions:
they suppress desynchronization (width behavior), which is
a positive sign, and suppress utilization of processing time
(average speed behavior).

VI. CONCLUSION

We have investigated the influence of the SW commu-
nication topology on the synchronization properties in the
conservative PDES algorithm using a model of the evolution
of the LVT profile. We simulated the model on several SW
network realizations, which differed in their local properties
and the procedure for inserting the long-range links. The
time evolution of the model on a regular network (with only

FIG. 19. The average speed 〈u〉 divided by 〈u0〉 as a function of
the parameter p̃ = p/k for N = 105 for network realizations: stars
are A-k1, triangles are A-k2, circles are A-k4, and squares are A-k8.
Error bars are of the symbol size.

TABLE IV. Dependence of the average speed 〈u0〉 in a regular
lattice (p = 0) on the parameter k.

Network type 〈u0〉
A-k1 0.246410(7)
A-k2 0.14674(7)
A-k4 0.08127(4)
A-k8 0.04299(3)

short-range interaction between PEs) belongs to the KPZ
universality class with the critical exponent values α = 1/2
and β = 1/3. In contrast, even a small number of long-range
links changes the behavior drastically. The growth exponent β

depends logarithmically on the concentration of long-range
links, β ∼ − ln p, and the roughness exponent α drops to
zero. The average profile speed decreases as a power of
the concentration p, 〈u〉 = 〈u0〉 − constant × pB with B =
0.306(4) for the network A-k1. It seems to take universal value
B ≈ 0.44(1) for the networks A-k2, A-k4, and A-k8, and it is
B = 0.450(2) for the network R-k2. We found a data collapse
of the profile width as a function of the concentration p for
the two realizations of the topology with a nonzero clustering
coefficient. The absence of data collapse for the network A-k1
can probably be attributed to the zero clustering coefficient. In
other words, the network A-k1 is not quite a conventional SW
network: it lacks clustering.

A model of time evolution for the conservative PDES was
investigated in [14,29] for an underlying network of the mean-
field type where any site is connected by a single link to a
randomly chosen site and each site hence has exactly three
links and each non-neighbor link is activated with probability
p. The results in [14,29] seem similar to some of our results
(we use the conventional SW network topology) but not all
results coincide. The common feature of the two approaches
is that the average shortest path grows logarithmically with
the number of PEs. For small p, it was found in [14] that the

FIG. 20. The difference between the speed �u = 〈u〉 − 〈u0〉
divided by 〈u0〉 as a function of the parameter p̃ = p/k for N = 105.
Network realizations: stars are A-k1, triangles are A-k2, circles are
A-k4, and squares are A-k8.
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FIG. 21. The average width 〈w2〉 as a function of time on a regular
lattice with p = 0 and different values of the parameter k from top to
bottom: k = 1, k = 2, k = 4, and k = 8. The system size N = 105.
The dashed line is a guide line for t2/3.

average speed of the profile growth is

〈u〉 
 1

4
+

√
p

4π
− O(p). (26)

In contrast, the average speed 〈u〉 in our simulations decreases
for any values of p with a power-law dependence on p,
〈u〉 
 〈u0〉 − constant × pB . The value of the exponent B is
universal for the networks with a nonzero clustering coefficient
and takes a different value for the network with a zero clustering
coefficient.

The same qualitative behavior for the average profile speed
〈u〉 and average profile width 〈w2

∞〉 was reported in [14,29],
but the dependence of the exponents α and β on p and of the
average speed 〈u〉 on the concentration p of long-range links
were not analyzed.

We found that value of the clustering coefficient influences
the progress of the profile, and we argue that the larger the
average coordination number, the slower the profile speed.

In the language of computation processes, the results are
as follows. First, additional random long-range communica-
tion links in the communication topology of PE links cause
more dependency checks during simulations and reduce the
average utilization of PEs, but the utilization remains positive;
i.e., the conservative PDES algorithm on SW networks remains
free from deadlock. Second, desynchronization becomes finite
and decreases with the number of long-range communications.
This enhances data collection and state savings in PDES.

TABLE V. Dependence of the exponent β on the concentration p

of long-range links.

A-k4 A-k8

p N = 104 N = 105 N = 104 N = 105

0 0.22(2) 0.291(1) 0.118(5) 0.25(1)
0.002 0.218(8) 0.27(1) 0.045(2) 0.06(1)
0.004 0.148(4) 0.18(1) 0.0315(4) 0.040(2)
0.006 0.113(2) 0.140(6) 0.027(2) 0.031(4)
0.008 0.094(2) 0.114(5) 0.024(2) 0.027(1)
0.01 0.083(3) 0.095(3) 0.022(2) 0.023(1)
0.02 0.055(2) 0.059(4) 0.0158(3) 0.165(1)
0.04 0.038(2) 0.039(2) 0.0113(3) 0.0116(4)
0.06 0.032(1) 0.0313(5) 0.0104(5) 0.0098(5)
0.08 0.0261(2) 0.0272(3) 0.0078(7) 0.0086(4)
0.1 0.0240(2) 0.0239(3) 0.0069(4) 0.0074(1)

The conservative synchronization algorithm of PDES hence
becomes fully scalable: (1) the progress rate of simulations
remains positive, and (2) desynchronization of the LVT profile
becomes finite in the limit of a large number of PEs.

We compared the results on different SW network realiza-
tions. All have a short average path, but they differ in the
clustering property and the construction method. One SW
network has a zero clustering coefficient, and the others are
highly clustered. The highly clustered networks differ in their
construction (random long-range links were either added or
rewired). Qualitatively, the same results were obtained in all
cases; i.e., the communication network can be rearranged
in any of the presented ways to obtain a well-synchronized
PDES algorithm. We found that the model properties depend
mainly on the number of long-range communication links
and weakly on the way the SW network is constructed. But
there is no universal behavior for all cases. For example, the
average utilization decreases faster with p in the case of SW
networks with a zero clustering coefficient compared with the
SW networks with a high clustering coefficient.

A detailed analysis of the synchronization model of the
conservative PDES algorithm on the SW networks allows
associating the parameters of the considered model with the
example of simulations of the particular models. These in turn
can shed light on how to optimize the simulations.
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