THE ANALYSIS OF OPTIMISTIC PARALLEL DISCRETE EVENT SIMULATION ALGORITHM ON SMALL-WORLD NETWORKS

Ziganurova Liliia^{1,2}, Lev Shchur^{1,2,3}

- 1. National Research University Higher School of Economics, Moscow
- 2. Scientific Center in Chernogolovka, Chernogolovka, Moscow area
- 3. Landau Institute for Theoretical Physics, Chernogolovka, Moscow area

What is the Parallel Discrete Event Simulation?

- What is the Parallel Discrete Event Simulation?
- Optimistic synchronisation algorithm

- What is the Parallel Discrete Event Simulation?
- Optimistic synchronisation algorithm
- The simulation of the algorithms on Small-World networks

- What is the Parallel Discrete Event Simulation?
- Optimistic synchronisation algorithm
- The simulation of the algorithms on Small-World networks
- Results: How the underlying topology affects the synchronisation in PDES?

Modern computer systems: 10⁶ of cores

- Modern computer systems: 10⁶ of cores
- Nodes have a number of CPUs, cores, and numerical accelerator

- Modern computer systems: 10⁶ of cores
- Nodes have a number of CPUs, cores, and numerical accelerator
- CPU's (cores, threads, ...) must be synchronised to efficiently execute one parallel program

- Modern computer systems: 10⁶ of cores
- Nodes have a number of CPUs, cores, and numerical accelerator
- CPU's (cores, threads, ...) must be synchronised to efficiently execute one parallel program
- High performance computing requires new approaches to programming models

- Modern computer systems: 10⁶ of cores
- Nodes have a number of CPUs, cores, and numerical accelerator
- CPU's (cores, threads, ...) must be synchronised to efficiently execute one parallel program
- High performance computing requires new approaches to programming models

Parallel Discrete Event Simulation is a method of large-scale simulation which allows to execute a single program on a parallel computer.

PARALLEL AND DISTRIBUTED SIMULATION*

Parallel simulation involves the execution of a *single* simulation on a collection of **tightly** coupled processors (e.g. a shared memory multiprocessor) **Distributed simulation** involves the execution of a *single* simulation on a collection of **loosely** coupled processors (e.g. PCs interconnected by a LAN or WAN)

*from R.Fujimoto[1]

ESSENTIAL PROPERTIES OF PDES:

Changes in subsystems occur at some instant of time and are called discrete events.

- Changes in subsystems occur at some instant of time and are called discrete events.
- To preserve causality between dependent objects some synchronisation protocol is used.

- Changes in subsystems occur at some instant of time and are called discrete events.
- To preserve causality between dependent objects some synchronisation protocol is used.
- Using the virtual time concept.

- Changes in subsystems occur at some instant of time and are called discrete events.
- To preserve causality between dependent objects some synchronisation protocol is used.
- Using the virtual time concept.
- Communication between parallel processes goes via timestamped messages.

- Changes in subsystems occur at some instant of time and are called discrete events.
- To preserve causality between dependent objects some synchronisation protocol is used.
- Using the virtual time concept.
- Communication between parallel processes goes via timestamped messages.
- No shared memory between subsystems.

UNDERLYING TOPOLOGIES

VIRTUAL TIME CONCEPT (AN EXAMPLE)

VIRTUAL TIME CONCEPT (AN EXAMPLE)

Optimistic algorithm

Allows emergence of causality errors but has a roll-back mechanism. The process, received a message with timestamp lower than its LVT ("from the past"), rolls-back to the state with lower time. It also sends anti messages to other processes to cancel previously sent messages.

OPTIMISTIC SYNCHRONISATION

Local virtual time of PEs

OPTIMISTIC SYNCHRONISATION

time of PEs

OPTIMISTIC SYNCHRONISATION

OPTIMISTIC SYNCHRONISATION

Local virtual time of PEs

THE CONCEPT OF VIRTUAL TIMES (EXAMPLE)

THE OBJECT OF THE RESEARCH

We study the scalability properties of **Optimistic** synchronisation algorithm on small-world communicational network.

Processing elements

THE MODEL OF EVOLUTION OF THE LOCAL VIRTUAL TIME PROFILE

```
Set parameters N, M, p, b
Create small-world graph with pN random long-
range links.
for t = 0..M do
    for i = 0..N do \tau_i(t) + = \eta_i
    k = Poisson(b)
    for j = 1..kN do
         Choose random PE_m
         Choose random neighbour of PE_m PE_r
        If \tau_m(t) > \tau_r(t) then \tau_m(t) = \tau_r(t)
    Calculate observables.
                                     \langle w^2(t) \rangle = \langle \frac{1}{N} \sum_{i=1}^{N} [\tau_i(t) - \overline{\tau}(t)]^2 \rangle
```

 $\langle u(t) \rangle = \langle \tau_i(t) - \tau_i(t-1) \rangle_i$

RESULT#1: AVERAGE SPEED

The parameter (progress rate):

 $q = \frac{1}{1+b}$

where *b* is a mean avalanche length (the number of PEs, which rolled back during one simulation step)

q

RESULT#1: AVERAGE SPEED FITTING

DIRECTED PERCOLATION UNIVERSALITY CLASS

v = 1.733847(6)

The phase transition takes place at

$$q_c = 0.189(2)$$

for the RSOS model

and

 $q_c = 0.233(1)$

for the unrestricted model

$$u = u_0 (q - q_c)^{\nu}$$

р	u ₀	q _c	V
0	1,093(5)	0,143(1)	1,66(1)
0,001	1,126(9)	0,149(3)	1,69(2)
0,01	1,165(8)	0,166(2)	1,70(1)
0,05	1,27(1)	0,202(2)	1,74(2)
0,1	1,38(1)	0,224(2)	1,79(1)
0,2	1,54(2)	0,249(3)	1,88(2)

RESULT#2: AVERAGE WIDTH

Regular lattice

RESULT#2: AVERAGE WIDTH

CONCLUSION:

- We built the model of local virtual time profile growth in optimistic PDES
- The average speed of the profile behaves as: $u = u_0 (q q_c)^v$
- The model belongs to DP universality class
- The behaviour of the average width does not change with the topology, i.e. it saturates after some time.

REFERENCIES

1. Fujimoto R.M. Parallel Discrete Event Simulation // Commun. ACM. 1990. V. 33. P. 31-53.

2. Jefferson D.R. Virtual Time // ACM Trans. on Programming Languages and Systems (TOPLAS). 1985. V. 7. P. 404-425.

3. Shchur, Lev N., and M. A. Novotny. "Evolution of time horizons in parallel and grid simulations." Physical Review E 70.2 (2004): 026703.

Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of small-world networks." nature 393.6684 (1998):
 440.

5. G. Korniss, Z. Toroczkai, M. Novotny, and P. A. Rikvold, Physical review letters 84, 1351 (2000).

6. Korniss G. et al. Suppressing roughness of virtual times in parallel discrete-event simulations //Science. - 2003. - T. 299. - №. 5607. - C. 677-679.

7. Wilsey, P.A.: Some Properties of Events Executed in Discrete-Event Simulation Models. In: Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete Simulation, pp. 165-176 (2016). ACM, New York (2016).

8. *Ziganurova L.F., Shchur L.N., Novotny M.A.* Model for the evolution of the time profile in optimistic parallel discrete event simulations // Journal of Physics: Conference Series **681** (2016) 012047

9. Ziganurova, Liliia & Shchur, Lev. (2017). Properties of the Conservative Parallel Discrete Event Simulation Algorithm. in Lecture Notes in Computer Science series, Vol. 10421, p. 246-253. doi: 10.1007/978-3-319-62932-2_23.