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We study acceptance ratios of local updates in
Monte Carlo simulations of classical spin models. We
derive analytic expressions for the expected value of
the acceptance ratios of Metropolis and heat bath
updates for a one-dimensional Ising model, and find simulations.
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Where the coupling constant | > 0 and §; € {1, ..., g}, 6(S;, Si+1) is the Kronecker

delta, which equals one whenever S; = S;,1 and zero otherwise.

ACCEPTANCE RATIO

We take L to be even throughout, so that 2.; 0Q; is even. The partition function
corresponding to Eq. (3) then reads:
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where x = e%#/ and p is inverse temperature. Performing the summation we obtain
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Note that flipping a spin S; flips the values of two bond charges, Q; and Q;_;. The

acceptance probabilities are defined by the sum ¢ = @ + Q1.
Denoting the expected value of the acceptance probability by R, the expected value of
the rejection probability is then
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Here the factor 21(20 — 1)/N(N — 1) counts the probability that, in a configuration
with

2.;0Q; =2l,fora randomly chosen site j we have Qj = Qj—l = 1.

The sum entering Eq. (6) is readily computed by differentiating the binomial formula
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twice. The result is
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In the thermodynamic limit L >> 1,the second term in brackets is negligible and Eq.(7)

simplifies to R = ﬁ Using the Eq.(5) we obtain € = — i—;i, where € = E/JL

Expected value of the acceptance ratio of metropolis update:

acceptance ratio is a linear function of the energy; for
the heat bath algorithm, the dependence is close to

linear outside of the low temperature range. These

---ﬁ.

dimensional Ising model, one- and two-dimensional
three- and four-state Potts models, and one- and two-

dimensional XY model.

analytic expressions are corroborated by numeric
We also report results of numeric

simulations of related classical spin models: the two-

ISING MODEL

One-dimensional Ising model defined by the Hamiltonian function
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Where the coupling constant / > 0 and §; = %1 are Ising spins, located at the sites

H=~]Yi1SiSi+1, (D

of a one-dimensional chain lattice of L sites with periodic boundary conditions.
We convert model (1) to bond variables. To this end, we define for a bond

connecting sites { and I + 1 the ‘charge’,
1
o—eo-e— Qi =-(5S41+1), (2)

Which takes values of 0 (for S; # S;4+1) and 1 (for S; = S;41). In this notation,
Eq.(1) takes the form

H=-2J%i,Q;+JL, (3)

Where the sum is taken over the bonds of the lattice.

XY MODEL

model defined by the Hamiltonian function

Hyy = —J Xi=1 €05(S; = Si+1)
Where the couplingMEsIaB@B@IaLﬁ tﬁmﬂ‘HM

A Monte Carlo simulation constructs an ergodic random walk in the configuration

space of a model, «** > U >V > -

, with the transition probabilities satistying
the detailed balance condition [3]. The stationary distribution of the random
process reproduces the equilibrium Gibbs distribution of the model (1) at a fixed

value of temperature T.

Metropolis algorithm. An elementary update of the local Metropolis algorithm
[1] proceeds in two steps: (i) select a random site j € [1, L],and (ii) flip its spin,
S;i = —S;, with the probability p(u = v) = min(l,e‘ﬁAE ) ,Where AE =
E, — E,, is the energy difference between the original and updated states. [4]

Heat bath algorithm. The heat bath algorithm differs from the Metropolis
algorithm only in that a spin-flip update is accepted with the probability [4]:
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