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We study acceptance ratios of local updates in

Monte Carlo simulations of classical spin models. We

derive analytic expressions for the expected value of

the acceptance ratios of Metropolis and heat bath

updates for a one-dimensional Ising model, and find

that for the Metropolis updates, the mean value of the

acceptance ratio is a linear function of the energy; for

the heat bath algorithm, the dependence is close to

linear outside of the low temperature range. These

analytic expressions are corroborated by numeric

simulations. We also report results of numeric

simulations of related classical spin models: the two-

dimensional Ising model, one- and two-dimensional

three- and four-state Potts models, and one- and two-

dimensional XY model.

Ising model

One-dimensional Ising model defined by the Hamiltonian function

𝐻 = −𝐽σ𝑖=1
𝐿 𝑆𝑖𝑆𝑖+1 , (1)

Where the coupling constant 𝐽 > 0 and 𝑆𝑖 = ±1 are Ising spins, located at the sites

of a one-dimensional chain lattice of 𝐿 sites with periodic boundary conditions.

We convert model (1) to bond variables. To this end, we define for a bond

connecting sites 𝑖 and 𝑖 + 1 the ‘charge’,

𝑄𝑖 =
1

2
𝑆𝑖𝑆𝑖+1 + 1 , 2

Which takes values of 0 (for 𝑆𝑖 ≠ 𝑆𝑖+1) and 1 (for 𝑆𝑖 = 𝑆𝑖+1). In this notation,

Eq.(1) takes the form

𝐻 = −2𝐽σ𝑖=1
𝐿 𝑄𝑖 + 𝐽𝐿, 3

Where the sum is taken over the bonds of the lattice.

Potts model

One-dimensional q-state Potts model defined by the Hamiltonian function 

𝐻𝑃𝑜𝑡𝑡𝑠 = −𝐽σ𝑖=1
𝐿 𝛿(𝑆𝑖 , 𝑆𝑖+1)

Where the coupling constant 𝐽 > 0 and 𝑆𝑖 ∈ {1,… , 𝑞}, 𝛿(𝑆𝑖 , 𝑆𝑖+1) is the Kronecker 

delta, which equals one whenever S𝑖 = 𝑆𝑖+1 and zero otherwise.

XY model

One-dimensional XY model defined by the Hamiltonian function 

𝐻XY = −𝐽σ𝑖=1
𝐿 cos(𝑆𝑖 − 𝑆𝑖+1)

Where the coupling constant 𝐽 > 0 and 𝑆𝑖 ∈ [0, 2𝜋).
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Acceptance Ratio

We take 𝐿 to be even throughout, so that σ𝑖 𝑄𝑖 is even. The partition function

corresponding to Eq. (3) then reads:

𝑍 = 𝑥−
𝐿
2෍

𝑙=0

𝐿/2

𝐶𝐿
2𝑙𝑥2𝑙 , (4)

where 𝑥 = 𝑒2𝛽𝐽 and 𝛽 is inverse temperature. Performing the summation we obtain

𝑍 =
1

2
𝑥−

𝐿
2 𝑥 + 1 𝐿 + 𝑥 − 1 𝐿 (5)

Note that flipping a spin 𝑆𝑗 flips the values of two bond charges, 𝑄𝑗 and 𝑄𝑗−1. The

acceptance probabilities are defined by the sum 𝑞 ≡ 𝑄𝑗 + 𝑄𝑗−1.
Denoting the expected value of the acceptance probability by 𝑅, the expected value of

the rejection probability is then

1 − 𝑅 =෍

𝑙=0

𝐿
2

1 − 𝑥−2
2𝑙

𝑁

2𝑙 − 1

𝑁 − 1

𝐶𝐿
2𝑙𝑥2𝑙𝑥−

𝐿
2

𝑍
(6)

Here the factor 2𝑙(2𝑙 − 1)/𝑁(𝑁 − 1) counts the probability that, in a configuration

with

σ𝑖𝑄𝑖 = 2𝑙, for a randomly chosen site 𝑗 we have 𝑄𝑗 = 𝑄𝑗−1 = 1.

The sum entering Eq. (6) is readily computed by differentiating the binomial formula

twice.The result is

1 − 𝑅 =
𝑥2 − 1

2𝑍
𝑥 + 1 𝐿−2 + 𝑥 − 1 𝐿−2 𝑥−

𝐿
2 (7)

In the thermodynamic limit 𝐿 ≫ 1,the second term in brackets is negligible and Eq.(7)

simplifies to 𝑅 =
2

𝑥+1
. Using the Eq.(5) we obtain 𝜀 = −

𝑥−1

𝑥+1
, where 𝜀 = 𝐸/𝐽𝐿

Expected value of the acceptance ratio of metropolis update:

𝑅 = 𝜀 + 1
Expected value of the acceptance ratio of the heat bath update:

𝑅𝐻𝐵 =
1

2

1−𝜀2

1+𝜀2

Metropolis Algorithm

A Monte Carlo simulation constructs an ergodic random walk in the configuration

space of a model, ⋯ → 𝜇 → 𝜈 → ⋯, with the transition probabilities satisfying

the detailed balance condition [3]. The stationary distribution of the random

process reproduces the equilibrium Gibbs distribution of the model (1) at a fixed

value of temperatureT.

Metropolis algorithm. An elementary update of the local Metropolis algorithm

[1] proceeds in two steps: (i) select a random site 𝑗 ∈ [1, 𝐿],and (ii) flip its spin,

𝑆𝑗 → −𝑆𝑗 , with the probability 𝑝 𝜇 → 𝜈 = min 1, 𝑒−𝛽Δ𝐸 , 𝑤ℎ𝑒𝑟𝑒 Δ𝐸 =

𝐸𝜈 − 𝐸𝜇 is the energy difference between the original and updated states. [4]

Heat bath algorithm. The heat bath algorithm differs from the Metropolis 

algorithm only in that a spin-flip update is accepted with the probability [4]:

𝑝 𝜇 → 𝜈 =
𝑒−𝛽𝐸𝜈

𝑒−𝛽𝐸𝜈 + 𝑒−𝛽𝐸𝜇


