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The description of quantum transport in a quadruple quantum-dot structure (QQD) is proposed taking

into account the Coulomb correlations and nonzero bias voltages. To achieve this goal the combination of

nonequilibrium Green’s functions and equation-of-motion technique is used. It is shown that the anisotropy

of kinetic processes in the QQD leads to negative differential conductance (NDC). The reason of the effect is

an interplay of the Fano resonances which are induced by the interdot Coulomb correlations. Different ways

to increase the peak-to-valley ratio related to the observed NDC are discussed.
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1. Technological development in recent decades al-

lowed the experimental study of systems of few-electron

quantum dots [1, 2]. In these structures the occupation

of each dot and the interaction between them are gov-

erned by the electric fields of gate electrodes. Since the

lifetime of single-electron spin state, a spin qubit, in

semiconducting quantum dot is relatively long, such ob-

jects are attractive for storage and processing of quan-

tum information [3, 4]. The research of quantum-dot

complexes in this direction is necessary to create a scal-

able architecture of spin qubits [5, 6].

Intra- and interdot Coulomb interactions are the key

factors determining different many-particle effects in the

systems of quantum dots. They are being considered as

a perfect testbed to study the properties of the Hub-

bard model due to the possibility of effective control of

the internal parameters such as the interdot tunneling,

single-electron energies and intensities of Coulomb in-

teractions [7].

Nowadays the structures consisting of three and four

quantum dots are experimentally available and can be

studied in different topologies. The dots can form a lin-

ear molecule where the nearest-neighbor tunneling of

electrons takes place and the edge dots are disconnected

from each other. Alternatively, such dots can be ar-

ranged in the shape of triangle or square, respectively. In

this case there is the nearest-neighbor coupling of all the

dots [8, 9, 10]. The topology significantly affects the sys-

tem properties. In particular, considering the Hubbard

1)e-mail: kagan@kapitza.ras.ru; asv86@iph.krasn.ru

model with very large values of the intradot Coulomb

repulsion, U , it was shown that the presence of closed

paths for the motion of electrons allows realization of

Nagaoka ferromagnetic order [11, 12]. In case of quadru-

ple quantum-dot structure (QQD) with three electrons

the appearance of ground state with spin S = 3/2 is

explained by the presence of effective gauge field which

leads to an increase of the energy of chiral state with

spin S = 1/2. This effect is one of the mechanisms that

initiates a spin blockade of electron current through the

QQD [13]. In this regime the transitions between the

states which differ in the number of electrons by 1 are

forbidden if the spin of these states differs by more than

1/2. It should be noted that the spin blockade was also

demonstrated earlier for double- and triple-linearly con-

nected quantum dots [14, 15] and for a separate multi-

level dot [16]. One of its manifestations in the observable

values is a current rectification and a negative differ-

ential conductance (NDC). Among other mechanisms

of current suppression in quantum-dot systems one can

mention the Aharonov–Bohm effect [17], the dark states

[18–20] and the isospin blockade [21].

In this article we propose an alternative description

of the NDC effect observed in the transport properties of

QQD. The investigated system is schematically shown

in Fig. 1. The dots constituting the device are located

at the vertices of square. The left and right metal con-

tacts considered in the one-band approximation are con-

nected to the 1st and 4th dots (1QD and 4QD), respec-

tively. Thus, there are second and third dots (2QD and

3QD) in the central part of the QQD and two paths,
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Fig. 1. (Color online) The QQD between the one-band

paramagnetic leads

top and bottom ones, for electron transport. The elec-

tron current is found as a result of solving the systems

of equations of motion for the nonequilibrium Green’s

functions. The NDC effect arising in the case of the

anisotropic QQD is interpreted in terms of bound states

in continuum (BICs) and the interaction of Fano reso-

nances which are formed by the Coulomb correlations

between the electrons of central dots, V .

2. The Hamiltonian of QQD between the metallic

leads is Ĥ = ĤL + ĤR + ĤD + ĤT . The terms ĤL

and ĤR describe left and right one-band leads, Ĥα =

=
∑

kσ ξkσc
+
αkσcαkσ, where cαkσ annihilates an electron

with a wave vector k, spin projection σ and energy

ξkσ = ǫkσ − µ (µ = 0 is a chemical potential) in the

α-th lead (α = L,R).

The QQD Hamiltonian reads

ĤQQD =

4
∑

σ;j=1

ξjσa
+
jσajσ + U

4
∑

j=1

nj↑nj↓ +

+ V
∑

σσ′

n2σn3σ′ +
∑

σ

[

t1
(

a+1σ + a+4σ
)

a2σ +

+ t2
(

a+1σ + a+4σ
)

a3σ + t0a
+
2σa3σ + h.c.

]

, (1)

where ajσ annihilates an electron with a spin projection

σ and an energy ξjσ = ǫjσ − µ on the level of j-th dot;

t1,2 – a hopping parameter in the top (1QD-2QD-4QD)

or bottom (1QD-3QD-4QD) arms (see Fig. 1); t0 – a

hopping parameter between the arms; U, V - intensities

of intra- and interdot Coulomb repulsion, respectively.

The last term in the Hamiltonian Ĥ is responsible

for the interaction between the subsystems,

ĤT = TL (t)
∑

kσ

c+Lkσa1σ+TR (t)
∑

kσ

c+Rkσa4σ+h.c., (2)

where TL(R) (t) = tL(R)e
∓ ieV

2
t – a coupling parameter

of the QQD with the left (right) lead. Note that the

time dependence in TL(R) (t) appears due to nonequi-

librium conditions meaning that the electrochemical

potentials, µL and µR, are different from each other,

µR − µL = eV [22]. In subsequent calculations of the

current and conductance we consider symmetric trans-

port regime, tL = tR = t.

3. The operator of steady-state electric current is

defined as 〈I (t, t)〉 ≡ I = e
〈

ṄL

〉

, where NL =

=
∑

kσ c+LkσcLkσ - the left-lead particle operator. Writ-

ing the equation of motion one can get (~ = 1)

I = ie
∑

kσ

[

T+
L (t)G+−

Lk1σ (t, t)−TL (t)G+−
1Lkσ (t, t)

]

. (3)

The nonequilibrium Green’s functions are introduced in

the expression (3). The operators cαkσ , ajσ entering into

them are ordered on the Keldysh contour, C [23].

If (2) is treated as an interaction operator than the

analysis of perturbation-theory series for the functions

G+−
Lk1σ and G+−

1Lkσ results in the following formula for

the current,

I = e
∑

σ

∫

C

dτ1

[

Σ+a
Lσ (t− τ1)G

a−
11σ (τ1 − t)−

−G+a
11σ (t− τ1)Σ

a−
Lσ (τ1 − t)

]

, (4)

where the self-energy functions are introduced,

Σab
Lσ (τ − τ ′) = T+

L (τ)
∑

k g
ab
Lkσ (τ − τ ′)TL (τ ′), which

characterize the influence of the left lead on the QQD;

gabLkσ (τ − τ ′) – the one-electron Green’s function of

the left lead. The value of upper indexes, a, b = +,−,

points out the branch of Keldysh contour, C+, C−.

The general form of the Dyson equation for the Green’s

function G11σ (τ − τ ′) is

G11σ (τ − τ ′) = g11σ (τ − τ ′) +

+

∫∫

C

dτ1τ2

[

g11σ (τ − τ1)ΣLσ (τ1 − τ2)G11σ (τ2 − τ ′)+

+ g14σ (τ − τ1)ΣRσ (τ1 − τ2)G41σ (τ2 − τ ′)
]

, (5)

where gijσ (τ − τ ′) – the bare Green’s functions of the

QQD. During the derivation of (4) and (5) we deal with

the nonmagnetic approximation. Specifically, the spin-

flip processes are neglected, 〈aiσa
+
jσ〉 = 0. After the

transition to integration over the real time contour and

the subsequent Fourier transform we obtain the follow-

ing expression

I = iΓ
∑

σ

+∞
∫

−∞

dω
[

fL (Ga
11σ −Gr

11σ)−G+−
11σ

]

, (6)

where fL ≡ f
(

ω + eV
2

)

– the Fermi–Dirac distribu-

tion function; Γ/2 = ΓL = ΓR = πt2g – the param-

eter that describes the broadening of QQD levels due
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to the coupling with the leads. In general, the density

of states of lead depends on frequency and spin projec-

tion, gσ (ω) =
∑

k δ (ω − ξkσ). However, in the article

the leads are supposed to be paramagnetic and have

wide band. Consequently, these dependencies can be ig-

nored and g = const. As a result, the Fourier transforms

of self-energy functions of α-th lead are Σr
ασ = − i

2Γ and

Σ+−
ασ = iΓfα.

To obtain the final expression describing the steady-

state current in the system let us find the Green’s func-

tions of the QQD entering into (6). For this purpose

we use the equation-of-motion technique. The general

form of equations for Gr
iσjσ′ (ω) ≡ 〈〈aiσ |a

+
jσ′ 〉〉r and

G+−
iσjσ′ (ω) ≡ 〈〈aiσ |a

+
jσ′ 〉〉+− differs from each other be-

cause of the definition of Gr,+−
iσ,jσ′ (t− t′),

z〈〈aiσ|a
+
jσ′ 〉〉

r =
〈{

aiσ, a+jσ′

}〉

+ 〈〈
[

aiσ, Ĥ
]

|a+jσ′ 〉〉
r,

z〈〈aiσ|a
+
jσ′ 〉〉

+− = 〈〈
[

aiσ, Ĥ
]

|a+jσ′ 〉〉
+−,

where z = ω + iδ. In addition, tak-

ing into account the diagram expansion of

mixed Green’s function, GL(R)kjσ (t− t′) =

=
∫

C

gL(R)kjσ (t− τ) TL(R) (τ)G1(4)jσ (τ − t′), the

corresponding equations become

z〈〈cL(R)kσ |a
+
jσ〉〉

r = grL(R)kσtL(R)〈〈a1(4)σ|a
+
jσ〉〉

r ,

z〈〈cL(R)kσ |a
+
jσ′〉〉+− =

= tL(R)

(

gr
L(R)kσ〈〈a1(4)σ|a

+
jσ〉〉

+− +

+ g+−
L(R)kσ〈〈a1(4)σ|a

+
jσ〉〉

a
)

,

where grαkσ = (z − ξkσ)
−1

, g+−
αkσ = 2πifαδ (ω − ξkσ).

Next, to derive the closed systems of equations we

use the decoupling procedure for the nonmagnetic

case developed in the Refs. [24–26]. Such an approx-

imation is valid at temperatures higher than the

Kondo temperature [27]. In the employed approach the

equations for the third-order Green’s functions, e.g.

〈〈n3σn2σa2σ|a
+
jσ〉〉

r,+−, should be decoupled. The solu-

tion of the final set of equations for the retarded Green’s

functions is

Gr
ββ =

CβZβ

Z
, Gr

ββ
=

CβCβx2

Z
, Gr

αα =
Cα∆α

Z
, (7)

Gr
αα =

CαCα∆1

Z
, Gr

βα =
CαCβTβPα

Z
,

β (α) = 1, 4(2, 3),

where ∆α = DαTβTβ − t2 (α)CαS, ∆1 = t0TβTβ +

t (α) t (α)S, S = CβTβ + CβTβ , Pα = t (α)Dα +

t0t (α)Cα, Z = TβTβx1 − Sx2, Zβ = Tβx1 − Cβx2,

Tβ = Dβ + iΓCβ/2, x1 = ∆α∆α − t20CαCα, x2 =

t (α)CαPα + t (α)CαPα, t (α) = t1,2. The factors Cα,β

and Dα,β contain the explicit dependencies on the oc-

cupation numbers, correlators and intensities of the

Coulomb interactions in the QQD: Cα = Cα1 + Cα2,

Cα1 = bα4 (bα2bα3 + Ubα3〈nα〉+ 2V bα2〈nα〉), Cα2 =

UV (bα2 + bα3)
(

2〈nα〉〈nα〉 − 〈a+αaα〉
2
)

, Cβ = bβ2 +

U〈nβ〉, Dα = bα1bα2bα3bα4, Dβ = bβ1bβ2, bα1 = z − ξα,

bα2 = bα1−U , bα3 = bα1−V (1 + 〈nα〉), bα4 = bα3−U .

Note that in the formulas (7) for simplicity the spin in-

dexes are omitted as in the nonmagnetic case we have

〈a+iσajσ〉 = 〈a+iσajσ〉. In turn, the solution of the system

of equations for G+−
ij gives

G+−

ββ(β)
= iΓ

Cβ

(

fβZβG
a

ββ(β)
+ fβCβx2G

a

ββ(β)

)

Z
,

G+−
αα(α)=iΓ

CαPα

(

fβCβTβG
a
βα(α)+fβCβTβG

a

βα(α)

)

Z
,

G+−
βα = iΓ

Cβ

(

fβZβG
a

βα(β)
+ fβCβx2G

a

βα(β)

)

Z
, (8)

where fβ = fL,R, Ga
ij =

(

Gr
ij

)∗
, G+−

ij = −
(

G+−
ji

)∗
.

Proceeding from the definition of lesser Green’s func-

tions the correlators and occupation numbers can be

obtained by self-consistent solution of the following in-

tegral equations

〈ni〉 = 2

+∞
∫

−∞

dω

2π
G+−

ii , 〈a+i aj〉 = 2

+∞
∫

−∞

dω

2π
G+−

ji . (9)

Substituting the calculated Green’s functions in (6) we

find the final expression describing the current in the

QQD,

I = 2eΓ2

+∞
∫

−∞

dωGr
14G

a
41 (fL − fR) =

= 2eΓ2

+∞
∫

−∞

dω
C2

1C
2
4x

2
2

|Z|2
(fL − fR) . (10)

Note that the factor 2 in the numerators of formulas (9)

and (10) arises as a result of the summation over the

spin indexes. In further discussion all the energy values

are measured in units of Γ. Additionally, the regime of

strong coupling with contacts will be analyzed (Γ = t1).

In subsequent calculations one-electron energies of the

edge dots are assumed to be the same, ξ1σ = ξ4σ = εD.
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The difference of energies of two central dots is con-

trolled by the parameter ∆, ξ2(3)σ = εD ±∆.

4. We now turn to the description of nonequilib-

rium transport through the QQD. The figures Fig. 2a

and b show the conductance of QQD and its occupa-

Fig. 2. (Color online) The effect of bias voltage on the gate-

voltage dependencies of conductance (a) and occupation

numbers (b) for the isotropic QQD. Parameters: U = 5,

V = 1, t1 = t2 = 1, t0 = ∆ = 0, kBT = 0.01

tion numbers as functions of gate field at different bias

voltages for the isotropic case, t1 = t2. It is seen that

the resonances of G (εD), which are located left and

right from the insulating band (that corresponds to the

half-filling), are split in comparison with the equilib-

rium regime (compare, e.g., dotted and dashed curves in

Fig. 2a). It can be explained by the fact that for eV 6= 0

the transmission of electrons is enhanced if the QQD en-

ergy level governed by the parameter εD coincides with

the electrochemical potential of the left or right lead,

µL,R = µ∓ eV
2 . Simultaneously, the Fano antiresonances

in the conductance emerging due to the Coulomb inter-

action between the central dots [25, 26] are modified if

eV 6= 0. Both insulating bands obtained in the linear

response regime persist at eV = 0.5. However, the fur-

ther increase in bias voltage gives rise to the decrease

of the bands’ widths (solid curve in Fig. 2a). Moreover,

in strongly nonequilibrium regime the effects which can-

not be described by the Landauer–Buttiker formula may

appear. As a result, for some gate voltages in the situa-

tion when Γ ∼ U, V : G > 2G0. The steps of occupation

numbers are also split at eV 6= 0 which is especially ev-

ident for the populations of two internal dots (Fig. 2b).

In this case each step corresponds to the conductance

resonance.

Let us pass to the anisotropic situation, t1 ≫ t2.

The Fig. 3a represents the modification of gate-voltage

dependence of conductance in this regime when the bias

voltage is turned on. It is seen that the anisotropy of

the kinetic processes in the QQD causes the appearance

of conductance antiresonances with negative values. In

the Fig. 3b the dotted curve shows the I-V characteris-

tic in the gate field εD = −0.82 corresponding to the

antiresonance of the highest amplitude in the Fig. 3a.

The I-V curve has four sections where the behavior of

conductance differs substantially. At source-drain field

energies |eV | ≤ 0.75, the current practically does not in-

crease analogously to the Coulomb blockade effect. At

0.75 ≤ |eV | ≤ 1 the significant growth takes place fol-

lowed by a sharp decline at |eV | ≈ 1 with a narrow val-

ley. At 1 ≤ |eV | ≤ 1.5 the current considerably increases

as well as in the second section. The peak-to-valley ratio

in this case is ∼ 1.4. The similar scenario is observed if

the QQD occupation is above half-filling (dashed curve

in Fig. 3b). The peak-to-valley ratio can be additionally

increased if we take into account the hopping between

the central dots and make their single-electron energies

different by means of several gate electrodes (t0 6= 0,

∆ 6= 0). The I-V characteristic corresponding to this

case is represented by a solid curve in the Fig. 3b. It is

clearly seen that the valley is wider and the peak-to-

valley ratio is ∼ 1.9. In the situation of T-shaped QQD

geometry (t2 = 0) the peak-to-valley ratio is ∼ 2.6. For

the Γ ≪ U, V mode and using the same relations be-

tween the hopping parameters t1, t2, t0 as in the Fig. 3

we can get the ratio of the order of 4 (the last two cases

are not represented in the Fig. 3).

The observed NDC effect is related to the features of

density of states (DOS) of the QQD in the anisotropic

regime, TDOS (ω) = − 1
π

4
∑

i=1

Im{Gr
ii (ω)}. First, we

start with the isotropic situation. The appropriate DOS

is displayed in the Fig. 4a. In the absence of Coulomb

interactions the positions of maxima of TDOS (ω) are
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Fig. 3. (Color online) The transport properties of

anisotropic QQD. (a) The gate-voltage dependence of con-

ductance. Inset: the Fano antiresonance and its splitting

at eV 6= 0. (b) The current-voltage characteristics. Param-

eters: t1 = 1, t2 = 0.1, the other parameters coincide with

the ones used in the Fig. 2

determined by the energies of eigenstates of Hamilto-

nian HQQD (U = V = 0) (dotted curve in Fig. 4a). If

t0 = ∆ = 0 that there are four levels with the en-

ergies: εD, εD ± 2t1. As it was shown in [28, 29], the

presence of the degeneracy can give rise to BICs. In our

case the BIC is displayed by the infinitely narrow peak

at ω = 0 whose width is characterized by the term iδ

in Gr
ij (ω). Switching on the intradot Coulomb interac-

tions results in the appearance of three new maxima

due to the splitting of single-electron excitation ener-

gies of the individual dot: εD, εD + U (dashed curve in

Fig. 4a). As a consequence, the additional BIC occurs

[30]. The interdot Coulomb interaction causes the extra

splitting of one-electron excitation energies. Thus, two

Fig. 4. (Color online) (a) – The influence of Coulomb cor-

relations on the BICs in the density of states of isotropic

QQD. (b) – The effect of anisotropy of kinetic processes

in the QQD on the BICs. Inset: one of the maxima related

to the BIC which is formed at V 6= 0. Parameters: εD = 0,

the other parameters coincide with the ones used in Fig. 3

new maxima and two BICs arise in the DOS (solid curve

in Fig. 4a). It is worth to note that these maxima are

the reason of the conductance resonances in the linear

response regime (dotted curve in Fig. 2a). In particu-

lar, the induction of asymmetric Fano peaks at V 6= 0

is attributed to the appearance of corresponding max-

ima in the dependence TDOS (ω) [25, 26]. In turn, the

BICs do not manifest themselves in the QQD transport

characteristics.

In the anisotropic situation the lifetime of two BICs

induced by the interdot Coulomb correlations becomes

finite. As a result, two narrow peaks of finite height

emerge (solid curve in Fig. 4b and the inset) and new

Fano antiresonances appears in the conductance. One of

them is shown in the inset of Fig. 3a at εD ≈ −6.5 (see

dotted curve). The nonzero value of G is due to the tem-

perature factor. It was already mentioned above that the
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conductance resonances are split in the nonequilibrium

regime. In turn, the antiresonance under consideration

is transformed into a narrow resonance and antireso-

nance with G > 0 and G < 0, respectively. They are

placed at the distance of approximately eV (in the inset

of Fig. 3a the bottom of resonance and the antiresonance

at eV 6= 0 are plotted by solid curve). The increase of

bias voltage shifts the antiresonance to the right. Simul-

taneously, the Fano asymmetric peak arising at V 6= 0

in the isotropic case is shifted to the left. Thus, the

amplification of NDC is observed when preformed Fano

features are close to each other and interact. The de-

scribed scenario is also realized if the QQD occupation

is less than one half.

Note that in [31], where a parallel-coupled double

quantum dot is studied, the NDC effect induced by the

Coulomb correlations occurs if the dots are connected

with the leads asymmetrically. In our case the NDC

takes place in the symmetric coupling regime. At the

same time, the asymmetry of kinetic processes, leading

to the above-mentioned peculiarities in the DOS and

specific redistribution of dots’ occupations, is a prop-

erty of the device itself.

5. In this article we investigated the influence of

nonequilibrium effects on quantum transport in a sys-

tem of four quantum dots taking into account the

Coulomb correlations. To find the expression that de-

scribes the electron current the nonequilibrium Green’s

functions and equation-of-motion technique are applied.

In order to obtain closed systems of equations for the

Green’s functions we used the decoupling scheme de-

veloped in [24–26] and based on the Hubbard-I ap-

proximation [32]. The numerical analysis of the QQD

DOS showed that the system contains the BICs in-

duced by the Coulomb interactions. It is shown that

the anisotropy of kinetic processes in the QQD results

in the finite lifetime of BICs which are created by the

interdot Coulomb interaction. The consequent Fano an-

tiresonances in the gate-voltage dependence of the con-

ductance are shifted in nonequilibrium regime. The in-

teraction of these features with the other Fano asym-

metric peaks (which are caused by the interdot Coulomb

correlations and appear even in the isotropic case) gives

rise to significant enhancement of the NDC effect. It

is demonstrated that the corresponding peak-to-valley

ratio of the I-V characteristic can be significantly in-

creased by the change of the system parameters.
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