

Photocatalytic CO₂ reduction and excited state carrier dynamics

Reporter: Xingxing Jiang Supervisor: Prof. Andrey S. Vasenko January 23, 2024

[§]Institute of Electronics and Mathematics, School of Electronic Engineering, HSE University, 101000 Moscow, Russia

1. Photocatalytic CO₂ reduction: Ferroelectric polarization and single-atom catalyst synergistically promoting CO_2 photoreduction in Ag@CuBiP₂Se₆ system

2. Excited state carrier dynamics: Electronic structural properties and carrier dynamics behaviors in $\text{CuBiP}_2\text{Se}_6/\text{C}_2\text{N}$ heterostructure

J. Am. Chem. Soc. 2021, 143, 7, 2984–2993

J. Am. Chem. Soc. 2020, 142, 29, 12563–12567

Chem. Rev. 2020, 120, 4, 2215-2287

Research background

Serious carbon dioxide emissions

extreme weather

Research background

Precious metals Advanced two-dimensional materials CH4, E = -4.20 V Α $C_2H_4, E = -4.10 V$ Mo 1.14 eV 102 meV С Pt(111) - Peak Pt₃Ni(111) CH₃OH, E = -4.06 V HCOOH, E = -3.83 V CH₂O, E = -3.96 V 0 eV -154 meV Nature. Comm. 2019, 10, 443 Science, 2017, 355 Science, 2015, 348(6240)

Adv. Mater. 2019, 31, 1808205

+OAA.J

8 . V

5

- Photocatalysis technology is considered as an effective way to alleviate energy crisis and environmental pollution.
- Based on these catalysts, the CO₂ can be converted into other chemical fuels, such as methane (CH₄) and carbinol (CH₃OH) 4

$\mathrm{CO}_2 + x\mathrm{H}^+ + \mathrm{e}^- \to \mathrm{CH}_x\mathrm{O}_y$

- □ The ultrafast recombination of photogenerated electron-hole pairs
- \square Thermodynamically stable and structure inert of CO_2
- □ High C=O activation energy of ~750 kJ mol⁻¹
- Multiple proton coupled electron transfer process
- □ A wide variety of products with complex intermediates

Low energy conversion efficiency!

Poor selectivity of reduction products!

Research motivation

Phys. Rev. Lett. 2014,112, 196102

Nature. Comm. 8, 14956 (2017)

 P_1

C+

Ag₂O

hv

C-

P₀

BaTiO₃

000

Ag₂O

hv

 E_V

 P_0

> However, the coupling mechanism between ferroelectricity and photocatalysis remains unclear.

Ferroelectric polarization and single-atom catalyst synergistically

promoting CO₂ photoreduction

Table 1. Equilibrium lattice constants and space groups of 2D-CuBiP₂Se₆

	a (Å)	b (Å)	c (Å)	α	β	γ	Space group
PE-phase	6.54	6.54	25.00	90.00°	90.00°	120.00°	R3 ⁻
FE-phase	6.55	6.55	25.00	90.00°	90.00°	120.00°	<i>P</i> 3

Electronic structure

> The PE and FE phases exhibit suitable bandgap and excellent semiconductor properties.

> The breaking of the inversion symmetry of the FE structure results in potential difference ($\Delta \Phi$) between the two surfaces, and cause an internal electric field.

Carrier separation and CO₂ activation

+ONA.J

K A

Photogenerated carriers will transfer in the opposite direction, and the holes tend to accumulate on the top surface, while the electrons tend to accumulate on bottom surface.

Electronic structure and band edge position

Different reaction pathways for CO₂ reduction

Interestingly, we found that switching ferroelectric polarization can regulated the reaction path and the final product.

Optimized configurations of the intermediates

Some key information of the intermediate

Table 2. Binding energy $(E_{\rm b})$, charge transfer (ΔQ), average bond length $(d_{\rm Ag-Se} \text{ or } d_{\rm Ag-IP})$,

	E _b (eV)	ΔQ_{Se} (e)	ΔQ_{Ag} (e)	ΔQ_{IP} (e)	d _{Ag-Se} (Å)	d _{Ag-IP} (Å)	E _d (eV)
CO ₂ *Ag@FE↑	-0.10	1.08	-1.38	0.29	2.84	1.70	-5.85
$CO_2*Ag@FE\downarrow$	-0.16	1.08	-1.34	0.28	2.87	1.94	-4.69
CO*Ag@FE↑	-0.86	1.12	-1.40	0.11	2.81	2.05	-6.58
CO*Ag@FE↓	-1.44	1.16	-1.38	0.14	2.94	2.09	-5.46
CHO*Ag@FE↑	-2.39	1.01	-1.21	0.16	2.95	2.13	-4.55
CHO*Ag@FE↓	-2.50	1.01	-1.21	0.19	2.81	2.12	-4.84
OCH ₂ O*Ag@FE↑	-3.12	0.78	-1.46	0.64	3.21	2.09	-4.18
OCH ₂ O*Ag@FE↓	-3.79	0.95	-1.45	0.66	3.37	2.28	-4.03
O*Ag@FE↑	-5.17	0.32	-1.40	0.89	2.81	2.14	-5.81
O*Ag@FE↓	-5.75	0.31	-1.43	0.87	3.05	2.21	-4.10

and *d*-band center (E_d)

d-band center and binding energy

+ONA.J

K A

- Switching ferroelectric polarization can cause some microscopic changes, especially in the average bond length and *d*-band center.
- > The bottom surface can provide more electrons to the intermediate and make it easier to be reduction.

Photoexcited Carrier Dynamic

The entire photocatalytic reaction involves three steps:

(I) Photogenerated carriers.

(II) Carriers separate and transfer from the inside to the surface of the photocatalyst.

(III) The electrons reduce CO_2 into value-added fuels and chemicals, and holes oxidize sacrificial reagents.

Among them, Step-II is the most critical step, which is also a key factor restricting the efficiency. Therefore, it is very important to explore the carrier transfer and recombination mechanism to improve the photocatalytic efficiency.

Calculation method

Non-adiabatic Molecular Dynamics (NAMD)

Non-Adiabatic MD & Real-Time TDDFT

Python eXtension of Ab

Initio Dynamic (PYXAID)

University of Southern California, Prof. Oleg V. Prezhdo

Calculation method

J. Am. Chem. Soc. 2022, 144, 6604–6612

Improved carrier separation by ferroelectric polarization in CuBiP₂Se₆/C₂N

heterostructure: a non-adiabatic molecular dynamics study

CuBiP₂Se₆/C₂N heterostructure

Average electrostatic potential

The intrinsic polarization result in an electrostatic potential difference ($\Delta \Phi$) between the two surfaces within the heterostructure.

Band alignment and transfer mechanism

A C A A . 3 +

. К

CIIIA

0

I

0

We found that the carrier lifetime can be increased from ~70 ps to ~120 ps by constructing heterostructure.

Small overlap of the wave functions between VBM and CBM

Band edge position and schematic diagram

➤ In summary, due to the $CuBiP_2Se_6/C_2N$ heterostructure has a suitable band edge potential, efficient type-II transfers mechanism and long carrier lifetime. We believe that $CuBiP_2Se_6/C_2N$ heterostructure may be an excellent photocatalysts for water splitting.

- We have revealed the microscopic relationship between ferroelectricity and photocatalytic performance in the Ag@CuBiP₂Se₆ system.
- We have proposed strategies to optimize the photocatalytic reaction path and control the final products by switching the ferroelectric polarization.
- We have elucidated the excited state carrier transfer and recombination mechanism in $CuBiP_2Se_6/C_2N$ heterostructure.

Prof. Andrey S. Vasenko (HSE University, Resources)
Prof. Yexin Feng (Hunan University, Funding acquisition)
Prof. Ke-Qiu Chen (Hunan University, Formal analysis)
Prof. Zhenkun Tang (Hengyang Normal University, Resources)
Prof. Jiang Zeng (Hunan University, Formal analysis)
Prof. Chuangjia Tong (Central South University, Methodology supporting)

Group Members:

Dr. Dongyu Liu (HSE University, Formal analysis)

Dr. Yueshao Zheng (Hunan University, Formal analysis)

Dr. Kaiping Wang (Central South University, Software supporting)

Thank you for your time and attention today!