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Optimal control problem

T̂

0

(ϕ0(x) + uϕ1(x))dt → min, ẋ = f0(x) + uf1(x)

x(0) ∈ B0 ⊂ Rn, x(T ) ∈ BT ⊂ Rn

|u| ≤ 1

Here x is a state variable, u is a scalar control,

ϕi : Rn → R, fi : Rn → Rn, i = 0, 1,

the functions ϕi , fi are smooth enough,

B0, BT are smooth manifolds.

The admissible controls u(t) need to be measurable,

the admissible trajectories x(t) are assumed to be absolutely

continuous.



Pontryagin's maximum principle

De�ne the Hamiltonian

H = H0(x , ψ) + uH1(x , ψ),

where H0(x , ψ) = f0(x)ψ − 1

2
ϕ0(x),

H1(x , ψ) = f1(x)ψ − 1

2
ϕ1(x).

We have the Hamiltonian system

ẋ =
∂H

∂ψ
, ψ̇ = −∂H

∂x
(1)

and

H (x (t) , ψ (t) , uopt (t)) = max
0≤u≤1

H (x (t) , ψ (t) , u) (2)



Singular extremal

Since the Hamiltonian H is linear in u, hence to maximize it

over the interval u ∈ [−1, 1] we need to use boundary values

depending on the sign of H1 = ψ.

The maximum condition yields:

u = +1 for H1 > 0, u = −1 for H1 < 0.

An extremal (x(t), ψ(t)), t ∈ (t0, t1), is called singular if

H1(x(t), ψ(t)) = 0 for t ∈ (t0, t1).

To �nd the control on singular extremal (x(t), ψ(t)) one needs

to di�erentiate the identity H1(x(t), ψ(t)) = 0.



Order of a singular extremal

We say that a number q is an order of a singular trajectory i�

∂

∂u

dk

dtk

∣∣∣∣
(1)

H1(x , ψ) = 0, k = 0, . . . , 2q − 1,

∂

∂u

d2q

dt2q

∣∣∣∣
(1)

H1(x , ψ) 6= 0

in some open neighborhood of the singular trajectory

(x(t), ψ(t)).

It is known that for optimal trajectories a singular arc of even

order is joined with a chattering trajectory.

A chattering trajectory is a trajectory with in�nite number

of control switchings in a �nite time interval.



Fuller problem

Minimize

ˆ ∞
0

s2(t)dt (3)

subject to

s̈(t) = u(t), −1 ≤ u(t) ≤ 1

with initial conditions

s(0) = a, ṡ(0) = b (4)



Optimal feedback control



Optimal Solutions in Fuller Problem

Denote ṡ = v

I The curve

s = −Cv 2sgnv

is the optimal switching set of the Fuller Problem. Here

C ≈ 0, 444623 . . ..

I Twisting around the origin the optimal trajectories attain

the origin in a �nite time and intersect the switching

curve at a countable set of points.

I The optimal control equals 1 from the left-hand side of

the switching curve and equals −1 from the right-hand

side of it.



Optimality conditions for the Fuller problem

H(s, v , φ, ψ) = −1

2
s2 + vφ + uψ = H0 + uH1

Let (s̃ (t) , ṽ (t) , ũ (t)) be an optimal solution in the problem.

Then there exist continuous functions φ (t) , ψ (t) such that

φ̇ = −∂H
∂s

= s,

ψ̇ = −∂H
∂v

= −φ,

ũ = +1 for ψ > 0 and ũ = −1 for ψ < 0.

If ψ = 0 for t ∈ (t0, t1) then an extremal

(s (t) , v (t) , φ (t) , ψ (t)) , t ∈ (t0, t1) ,

is a singular one.



Singular Control

Denote z = (s, v , φ, ψ). We have:

H1 (z (t)) = ψ (t) ≡ 0,
d

dt
H1 (z (t)) = 0⇒ −φ (t) = 0

d2

dt2
H1 (z (t)) = 0⇒ −s (t) = 0,

d3

dt3
H1 (z (t)) = 0⇒ −v (t) = 0,

d4

dt4
H1 (z (t)) = 0⇒ −u (t) = 0. (5)

The singular extremal in the Fuller problem s = 0, v = 0.



n -link inverted pendulum



n -link inverted pendulum

M is the cart mass, s is the cart position,

g is the acceleration of gravity, u is the force applied to the

cart,

γi is the angle of deviation of the ith link from the vertical line,

mi is the mass of the ith link,

ri is the distance from the lower end of the ith link to its

center of mass,

Ii is the moment of inertia with respect to the center of mass

of the ith link,

and li is the length of the ith link (i = 1, . . . , n).



n -link inverted pendulum. Motion equations

The equations of motion are

a11s̈ +
n∑

i=1

a1,i+1γ̈i cos γi −
n∑

i=1

a1,i+1γ̇i
2 sin γi = u

a1,i+1s̈ cos γi + ai+1,i+1γ̈i +
n∑

j=1

ai+1,j+1γ̈j cos(γi + γj)− (6)

−
n∑

j=1

ai+1,j+1γ̇
2

j sin(γi + γj)− bi sin γi = 0, i = 1, . . . , n.



n -link inverted pendulum.

We assume that the initial state of the system is in a suciently

small neighbourhood of the upper unstable equilibrium position

γ1 = γ̇1 = · · · = γn = γ̇n ≡ 0. (7)

We study the problem of stabilization of the pendulum in the

neighbourhood of position (7) in the sense of minimization of

the quadratic functional

∞̂

0

〈γ, γ〉 dt → min, (8)



Linearized model. Optimal control problem

∞̂

0

〈Kx (t) , x (t)〉 dt → min (9)

on the trajectories of the system

ẍ (t)− Λx (t) = Iu (t) (10)

with the initial conditions

x(0) = x0, ẋ(0) = y0. (11)

Here, the control u (t) is a bounded scalar function:

|u (t) | ≤ 1, (12)



Optimal control problem. Notation

x ∈ Rn are phase variables,

I is the vector consisting of 1's,

K is a constant symmetric positive de�nite n × n matrix,

Λ is a constant diagonal positive de�nite n × n matrix,

Λ = diag {λ1, λ2, . . . , λn}, λ1, . . . , λn > 0.



Pontryagin Maximum Principle

H(x , y , φ, ψ) = −1

2
〈Kx , x〉+ 〈y , φ〉+ 〈Λx , ψ〉+ 〈I , ψ〉u

ẋ = y

ẏ = Λx + Iu

φ̇ = Kx − Λψ (13)

ψ̇ = −φ

u (t) = sgn H1(t) = sgn 〈I , ψ (t)〉 (14)



Singular solution

H1(t) = 〈I , ψ (t)〉 ≡ 0,
dH1

dt
= −〈I , φ〉,

d2H1

dt2
= −〈I ,Kx − Λψ〉, d3H1

dt3
= −〈I ,Ky + Λφ〉,

d4H1

dt4
= −〈I ,K (Λx + Iu) + Λ (Kx − Λψ)〉 = (15)

= −〈I , (KΛ + ΛK ) x〉+ 〈I , Λ2ψ〉 − u〈KI , I 〉



Singular control

S = { 〈I , φ〉 = 0, 〈I ,Kx − Λψ〉 = 0,

〈I ,Ky + Λφ〉 = 0, −〈I , (KΛ + ΛK ) x〉+ 〈I , Λ2ψ〉 = 0
}

uoc (t) =
−〈I , (KΛ + ΛK ) x (t)〉+ 〈I , Λ2ψ (t)〉

σ

Here σ = 〈KI , I 〉.Since |u (t) | 6 1 we consider the domain∣∣−〈I , (KΛ + ΛK ) x〉+ 〈I , Λ2ψ〉
∣∣ ≤ σ



Hamiltonian system in the singular surface S



ẋk = yk ,

ẏk = λkxk +
1

σ

(
−

n∑
i=1

n∑
j=1

kij(λi + λj − (λ1 + λ2))xi+

+
n∑

i=3

(λ1 − λi )(λ2 − λi )ψi

)
k = 1, . . . , n;

ψ̇k = −φk ,

φ̇k =
n∑

j=1

kkjxj − λkψk , k = 3, . . . , n;



singular surface

Optimal solution reaches S in a �nite time with an in�nite

number of control switchings (chattering regime). Then the

motion proceeds along the singular surface and asymptotically

approaching the origin.



Model problem with two-dimensional control

∞̂

0

(x2
1

(t) + x2
2

(t)) dt → min

ẋ1 = y1, ẋ2 = y2

ẏ1 = u1, ẏ2 = u2

xi(0) = s0i , yi(0) = ri
0,

i = 1, 2

u2

1
+ u2

2
≤ 1



Optimal Solutions of the Model Problem
I Optimal solutions, starting from a small enough

neigbourhood of the origin, reach zero in �nite time T∗
which depends on (x0, y 0). Moreover the optimal control

û (t) does not have a limit at t → T − 0.
I There exist optimal solutions of the model problem that

represent logarithmic spirals:

x∗(t) = B1t
2e iα ln |T∗−t|, y ∗(t) = B2te

iα ln |T∗−t|,

u∗(t) = −e iα ln |T∗−t|,

α = ±
√
5, B1 =

1

126
(4 + iα) (3 + iα) ,

B2 =
1

126
(4 + iα) (3 + iα) (2 + iα)

As t → T ∗ the control u∗(t) makes countably many rotations

along the circle S1 in �nite time, x∗ (t) , y ∗ (t)→ 0 and

switches to a singular mode x = y = 0.



Spherical Inverted Pendulum

B : point mass m, S : movable base of mass M

B is attached to a rigid massless rod of length `

x1: angle between SB and Oηζ,

x2 : angle between SB and Oξζ

(ξ, η) : position of S , (u1, u2): the control forces



Control problem for linearized model

ẍ1 =
M + m

ml
gx1 −

1

Ml
u1, ẍ2 =

M + m

ml
gx2 −

1

Ml
u2

∞̂

0

(x2
1

(t) + x2
2

(t)) dt → min

ẋ = y , ẏ = Kx + u,

x(0) = x0, y(0) = y 0.

Here x , y , u ∈ R2 , K is a 2× 2 diagonal matrix,

K = diag {k1, k2}.
The control force is bounded:

u2

1
+ u2

2
≤ 1



Main results for sperical pendulum

In a su�ciently small neighborhood of the origin there exist

solutions of (10)�(20) that attain the upper equilibrium

position and have the form of logarithmic spirals

x(t) = Cx(T − t)2e i%ln|T−t|(1 + gx (T − t)),

y(t) = Cy (T − t)e i%ln|T−t|(1 + gy (T − t)),

u(t) = −Cue
i%ln|T−t|(1 + gu (T − t)),

Here 0 < T <∞ is a time at which solution hits the origin

(the hitting time), gx ,y ,u (T − t)→ 0 as t → T , % > 0,

Cx ,y ,u ∈ C.
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