Moscow Institute of Electronics and Mathematics

Fuller Phenomenon in optimal control problems

Larisa Manita

lmanita@hse.ru
14 November 2018
Moscow, Russia

Optimal control problem

$$
\int_{0}^{T}\left(\varphi_{0}(x)+u \varphi_{1}(x)\right) d t \rightarrow \min , \quad \dot{x}=f_{0}(x)+u f_{1}(x)
$$

$$
x(0) \in B_{0} \subset \mathbb{R}^{n}, \quad x(T) \in B_{T} \subset \mathbb{R}^{n}
$$

$$
|u| \leq 1
$$

Here x is a state variable, u is a scalar control,
$\varphi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, i=0,1$, the functions φ_{i}, f_{i} are smooth enough, B_{0}, B_{T} are smooth manifolds.
The admissible controls $u(t)$ need to be measurable, the admissible trajectories $x(t)$ are assumed to be absolutely continuous.

Pontryagin's maximum principle

Define the Hamiltonian

$$
H=H_{0}(x, \psi)+u H_{1}(x, \psi)
$$

where $H_{0}(x, \psi)=f_{0}(x) \psi-\frac{1}{2} \varphi_{0}(x)$, $H_{1}(x, \psi)=f_{1}(x) \psi-\frac{1}{2} \varphi_{1}(x)$.
We have the Hamiltonian system

$$
\begin{equation*}
\dot{x}=\frac{\partial H}{\partial \psi}, \quad \dot{\psi}=-\frac{\partial H}{\partial x} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(x(t), \psi(t), u^{o p t}(t)\right)=\max _{0 \leq u \leq 1} H(x(t), \psi(t), u) \tag{2}
\end{equation*}
$$

Singular extremal

Since the Hamiltonian H is linear in u, hence to maximize it over the interval $u \in[-1,1]$ we need to use boundary values depending on the sign of $H_{1}=\psi$.
The maximum condition yields:
$u=+1$ for $H_{1}>0, \quad u=-1$ for $H_{1}<0$.
An extremal $(x(t), \psi(t)), t \in\left(t_{0}, t_{1}\right)$, is called singular if $H_{1}(x(t), \psi(t))=0$ for $t \in\left(t_{0}, t_{1}\right)$.
To find the control on singular extremal $(x(t), \psi(t))$ one needs to differentiate the identity $H_{1}(x(t), \psi(t))=0$.

Order of a singular extremal

We say that a number q is an order of a singular trajectory iff

$$
\begin{gathered}
\left.\frac{\partial}{\partial u} \frac{d^{k}}{d t^{k}}\right|_{(1)} H_{1}(x, \psi)=0, \quad k=0, \ldots, 2 q-1, \\
\left.\frac{\partial}{\partial u} \frac{d^{2 q}}{d t^{2 q}}\right|_{(1)} H_{1}(x, \psi) \neq 0
\end{gathered}
$$

in some open neighborhood of the singular trajectory $(x(t), \psi(t))$.
It is known that for optimal trajectories a singular arc of even order is joined with a chattering trajectory.
A chattering trajectory is a trajectory with infinite number of control switchings in a finite time interval.

Fuller problem

Minimize

$$
\begin{equation*}
\int_{0}^{\infty} s^{2}(t) d t \tag{3}
\end{equation*}
$$

subject to

$$
\ddot{s}(t)=u(t), \quad-1 \leq u(t) \leq 1
$$

with initial conditions

$$
\begin{equation*}
s(0)=a, \quad \dot{s}(0)=b \tag{4}
\end{equation*}
$$

Optimal feedback control

Optimal Solutions in Fuller Problem

Denote $\dot{s}=v$

- The curve

$$
s=-C v^{2} s g n v
$$

is the optimal switching set of the Fuller Problem. Here $C \approx 0,444623 \ldots$

- Twisting around the origin the optimal trajectories attain the origin in a finite time and intersect the switching curve at a countable set of points.
- The optimal control equals 1 from the left-hand side of the switching curve and equals -1 from the right-hand side of it.

Optimality conditions for the Fuller problem

$$
H(s, v, \phi, \psi)=-\frac{1}{2} s^{2}+v \phi+u \psi=H_{0}+u H_{1}
$$

Let $(\widetilde{s}(t), \widetilde{v}(t), \widetilde{u}(t))$ be an optimal solution in the problem.
Then there exist continuous functions $\phi(t), \psi(t)$ such that

$$
\begin{aligned}
\dot{\phi} & =-\frac{\partial H}{\partial s}=s, \\
\dot{\psi} & =-\frac{\partial H}{\partial v}=-\phi,
\end{aligned}
$$

$\widetilde{u}=+1$ for $\psi>0 \quad$ and $\quad \widetilde{u}=-1$ for $\psi<0$.
If $\psi=0$ for $t \in\left(t_{0}, t_{1}\right)$ then an extrema

$$
(s(t), v(t), \phi(t), \psi(t)), \quad t \in\left(t_{0}, t_{1}\right),
$$

is a singular one.

Singular Control

Denote $z=(s, v, \phi, \psi)$. We have:

$$
\begin{align*}
H_{1}(z(t))= & \psi(t) \equiv 0, \quad \frac{d}{d t} H_{1}(z(t))=0 \Rightarrow-\phi(t)=0 \\
& \frac{d^{2}}{d t^{2}} H_{1}(z(t))=0 \Rightarrow-s(t)=0 \\
& \frac{d^{3}}{d t^{3}} H_{1}(z(t))=0 \Rightarrow-v(t)=0 \\
& \frac{d^{4}}{d t^{4}} H_{1}(z(t))=0 \Rightarrow-u(t)=0 \tag{5}
\end{align*}
$$

The singular extremal in the Fuller problem $s=0, v=0$.

n-link inverted pendulum

n-link inverted pendulum

M is the cart mass, s is the cart position, g is the acceleration of gravity, u is the force applied to the cart,
γ_{i} is the angle of deviation of the i th link from the vertical line, m_{i} is the mass of the i th link,
r_{i} is the distance from the lower end of the ith link to its
center of mass,
I_{i} is the moment of inertia with respect to the center of mass
of the ith link,
and I_{i} is the length of the i th link $(i=1, \ldots, n)$.

n-link inverted pendulum. Motion equations

The equations of motion are

$$
\begin{align*}
& a_{11} \ddot{s}+\sum_{i=1}^{n} a_{1, i+1} \ddot{\gamma}_{i} \cos \gamma_{i}-\sum_{i=1}^{n} a_{1, i+1} \dot{\gamma}_{i}^{2} \sin \gamma_{i}=u \\
& a_{1, i+1} \ddot{s} \cos \gamma_{i}+a_{i+1, i+1} \ddot{\gamma}_{i}+\sum_{j=1}^{n} a_{i+1, j+1} \ddot{\gamma}_{j} \cos \left(\gamma_{i}+\gamma_{j}\right)-\quad \text { (6) } \tag{6}\\
& -\sum_{j=1}^{n} a_{i+1, j+1} \dot{\gamma}_{j}^{2} \sin \left(\gamma_{i}+\gamma_{j}\right)-b_{i} \sin \gamma_{i}=0, \quad i=1, \ldots, n .
\end{align*}
$$

n-link inverted pendulum.

We assume that the initial state of the system is in a suciently small neighbourhood of the upper unstable equilibrium position

$$
\begin{equation*}
\gamma_{1}=\dot{\gamma}_{1}=\cdots=\gamma_{n}=\dot{\gamma}_{n} \equiv 0 . \tag{7}
\end{equation*}
$$

We study the problem of stabilization of the pendulum in the neighbourhood of position (7) in the sense of minimization of the quadratic functional

$$
\begin{equation*}
\int_{0}^{\infty}\langle\gamma, \gamma\rangle d t \rightarrow \min , \tag{8}
\end{equation*}
$$

Linearized model. Optimal control problem

$$
\begin{equation*}
\int_{0}^{\infty}\langle K x(t), x(t)\rangle d t \rightarrow \min \tag{9}
\end{equation*}
$$

on the trajectories of the system

$$
\begin{equation*}
\ddot{x}(t)-\Lambda x(t)=\operatorname{lu}(t) \tag{10}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
x(0)=x_{0}, \quad \dot{x}(0)=y_{0} \tag{11}
\end{equation*}
$$

Here, the control $u(t)$ is a bounded scalar function:

$$
\begin{equation*}
|u(t)| \leq 1, \tag{12}
\end{equation*}
$$

Optimal control problem. Notation

$x \in \mathbb{R}^{n}$ are phase variables,
I is the vector consisting of 1 's,
K is a constant symmetric positive definite $n \times n$ matrix,
Λ is a constant diagonal positive definite $n \times n$ matrix,
$\Lambda=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}, \lambda_{1}, \ldots, \lambda_{n}>0$.

Pontryagin Maximum Principle

$$
\begin{align*}
& H(x, y, \phi, \psi)=-\frac{1}{2}\langle K x, x\rangle+\langle y, \phi\rangle+\langle\Lambda x, \psi\rangle+\langle I, \psi\rangle u \\
& \dot{x}=y \\
& \dot{y}=\Lambda x+I u \\
& \dot{\phi}=K x-\Lambda \psi \tag{13}\\
& \dot{\psi}=-\phi
\end{align*}
$$

$$
\begin{equation*}
u(t)=\operatorname{sgn} H_{1}(t)=\operatorname{sgn}\langle I, \psi(t)\rangle \tag{14}
\end{equation*}
$$

Singular solution

$$
\begin{gather*}
H_{1}(t)=\langle I, \psi(t)\rangle \equiv 0, \quad \frac{d H_{1}}{d t}=-\langle I, \phi\rangle, \\
\frac{d^{2} H_{1}}{d t^{2}}=-\langle I, K x-\Lambda \psi\rangle, \quad \frac{d^{3} H_{1}}{d t^{3}}=-\langle I, K y+\Lambda \phi\rangle, \\
\frac{d^{4} H_{1}}{d t^{4}}=-\langle I, K(\Lambda x+I u)+\Lambda(K x-\Lambda \psi)\rangle= \tag{15}\\
=-\langle I,(K \Lambda+\Lambda K) x\rangle+\left\langle I, \Lambda^{2} \psi\right\rangle-u\langle K I, I\rangle
\end{gather*}
$$

Singular control

$$
\begin{aligned}
S= & \{\langle I, \phi\rangle=0,\langle I, K x-\Lambda \psi\rangle=0, \\
& \left.\langle I, K y+\Lambda \phi\rangle=0,-\langle I,(K \Lambda+\Lambda K) x\rangle+\left\langle I, \Lambda^{2} \psi\right\rangle=0\right\} \\
& u_{o c}(t)=\frac{-\langle I,(K \Lambda+\Lambda K) x(t)\rangle+\left\langle I, \Lambda^{2} \psi(t)\right\rangle}{\sigma}
\end{aligned}
$$

Here $\sigma=\langle K I, I\rangle$. Since $|u(t)| \leqslant 1$ we consider the domain

$$
\left|-\langle I,(K \Lambda+\Lambda K) x\rangle+\left\langle I, \Lambda^{2} \psi\right\rangle\right| \leq \sigma
$$

Hamiltonian system in the singular surface S

$$
\begin{aligned}
& \left(\dot{x}_{k}=y_{k},\right. \\
& \left\{\begin{array}{c}
\dot{y}_{k}=\lambda_{k} x_{k}+\frac{1}{\sigma}\left(-\sum_{i=1}^{n} \sum_{j=1}^{n} k_{i j}\left(\lambda_{i}+\lambda_{j}-\left(\lambda_{1}+\lambda_{2}\right)\right) x_{i}+\right. \\
\left.+\sum_{i=3}^{n}\left(\lambda_{1}-\lambda_{i}\right)\left(\lambda_{2}-\lambda_{i}\right) \psi_{i}\right)
\end{array}\right. \\
& k=1, \ldots, n ; \\
& \dot{\psi}_{k}=-\phi_{k}, \\
& \dot{\phi}_{k}=\sum_{j=1}^{n} k_{k j} x_{j}-\lambda_{k} \psi_{k}, \quad k=3, \ldots, n ;
\end{aligned}
$$

singular surface

Optimal solution reaches S in a finite time with an infinite number of control switchings (chattering regime). Then the motion proceeds along the singular surface and asymptotically approaching the origin.

Model problem with two-dimensional control

$$
\int_{0}^{\infty}\left(x_{1}^{2}(t)+x_{2}^{2}(t)\right) d t \rightarrow \min
$$

$$
\dot{x}_{1}=y_{1}, \quad \dot{x}_{2}=y_{2}
$$

$$
\dot{y}_{1}=u_{1}, \quad \dot{y}_{2}=u_{2}
$$

$$
x_{i}(0)=s_{i}^{0}, \quad y_{i}(0)=r_{i}^{0}
$$

$$
i=1,2
$$

$$
u_{1}^{2}+u_{2}^{2} \leq 1
$$

Optimal Solutions of the Model Problem

- Optimal solutions, starting from a small enough neigbourhood of the origin, reach zero in finite time $T *$ which depends on $\left(x^{0}, y^{0}\right)$. Moreover the optimal control $\hat{u}(t)$ does not have a limit at $t \rightarrow T-0$.
- There exist optimal solutions of the model problem that represent logarithmic spirals:

$$
\begin{aligned}
x^{*}(t) & =B_{1} t^{2} e^{i \alpha \ln \left|T^{*}-t\right|}, y^{*}(t)=B_{2} t e^{i \alpha \ln \left|T^{*}-t\right|} \\
u^{*}(t) & =-e^{i \alpha \ln \left|T^{*}-t\right|} \\
\alpha & = \pm \sqrt{5}, B_{1}=\frac{1}{126}(4+i \alpha)(3+i \alpha) \\
B_{2} & =\frac{1}{126}(4+i \alpha)(3+i \alpha)(2+i \alpha)
\end{aligned}
$$

As $t \rightarrow T^{*}$ the control $u^{*}(t)$ makes countably many rotations along the circle S^{1} in finite time, $x^{*}(t), y^{*}(t) \rightarrow 0$ and switches to a singular mode $x=y=0$.

Spherical Inverted Pendulum

B : point mass m, S : movable base of mass M
B is attached to a rigid massless rod of length ℓ x_{1} : angle between $S B$ and $O \eta \zeta$,
x_{2} : angle between $S B$ and $O \xi \zeta$
(ξ, η) : position of $S,\left(u_{1}, u_{2}\right)$: the control forces

Control problem for linearized model

$$
\begin{gathered}
\ddot{x}_{1}=\frac{M+m}{m l} g x_{1}-\frac{1}{M l} u_{1}, \quad \ddot{x}_{2}=\frac{M+m}{m l} g x_{2}-\frac{1}{M l} u_{2} \\
\int_{0}^{\infty}\left(x_{1}^{2}(t)+x_{2}^{2}(t)\right) d t \rightarrow \min \\
\dot{x}=y, \quad \dot{y}=K x+u, \\
x(0)=x^{0}, \quad y(0)=y^{0} .
\end{gathered}
$$

Here $x, \quad y, \quad u \in \mathbb{R}^{2}, K$ is a 2×2 diagonal matrix, $K=\operatorname{diag}\left\{k_{1}, k_{2}\right\}$.
The control force is bounded:

$$
u_{1}^{2}+u_{2}^{2} \leq 1
$$

Main results for sperical pendulum

In a sufficiently small neighborhood of the origin there exist solutions of (10)-(20) that attain the upper equilibrium position and have the form of logarithmic spirals

$$
\begin{aligned}
& x(t)=C_{x}(T-t)^{2} e^{i \varrho I n|T-t|}\left(1+g_{x}(T-t)\right) \\
& y(t)=C_{y}(T-t) e^{i \varrho \ln |T-t|}\left(1+g_{y}(T-t)\right) \\
& u(t)=-C_{u} e^{i \varrho \ell n|T-t|}\left(1+g_{u}(T-t)\right)
\end{aligned}
$$

Here $0<T<\infty$ is a time at which solution hits the origin (the hitting time), $g_{x, y, u}(T-t) \rightarrow 0$ as $t \rightarrow T, \varrho>0$, $C_{x, y, u} \in \mathbb{C}$.

References

THANK YOU!

