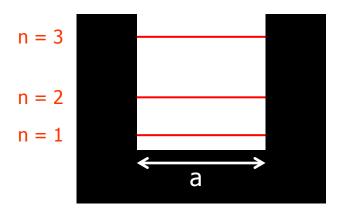
Quantum size phenomena in bismuth nanostructures

Konstantin Arutyunov ^{1,2} K.-P. Riikonen³, E. A. Sedov¹

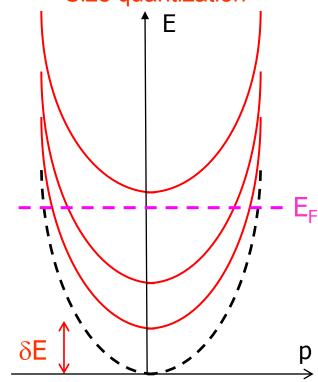
¹Moscow Institute for Electronics and Mathematics at National Research University High School of Economics, Moscow ²Kapitza Institute for Physical Problems, Russian Academy of Science, Moscow ³NanoScience Centre, University of Jyväskylä, Finland



Outline

- Introduction: Quantum Size Effect (QSE)
 - Existing experiments
 - Bismuth: properties and fabrication
 - 2D films
 - 1D nanowires
 - Conclusions

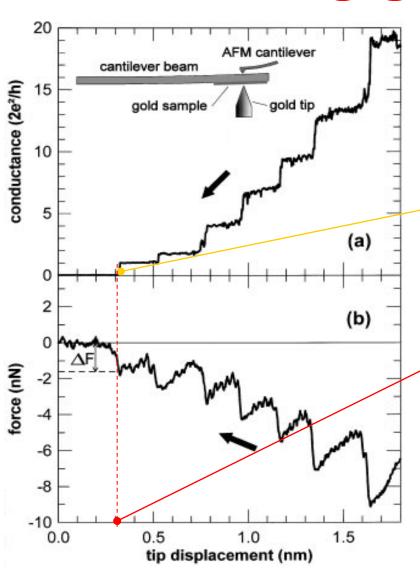
Size quantization


Particle in a potential 'box'

$$E_n = \frac{\hbar^2 \pi^2}{2a^2 m} n^2,$$

where n = 1, 2, 3...

Conducting electrons
Size quantization

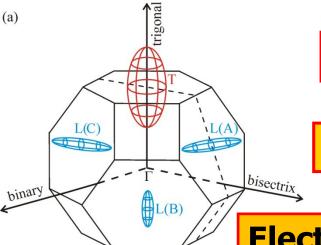


If Fermi energy E_F constant:

- properties should 'periodically' depend on the dimension a
- below a certain scale (de Broglie wavelength) δE>E_F: metal-insulator transition

For a 'good' metal ($E_F \sim 1$ eV, $m^* = m_0$) quantum size effects are important at scales of about 1 nm

Chewing gum experiment


G. Rubio, N. Agraït, and S. Vieira, *Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport* Phys. Rev. Lett. **76**, 2302 (1996)

Electric conductivity turns to zero

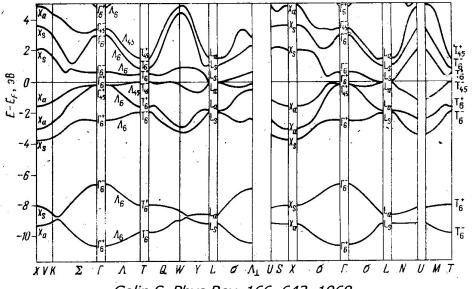
Diameter ~ 0.3 nm

For gold 0.3 nm is about one interatomic distance...

Bismuth: unique material for solid state physics

Electron mass m*< 0.01 m₀

Anomalously small $E_F = 28 \text{ meV}$


Electron concentration $n_e \sim 3 \times 10^{17} \, 1/cm$

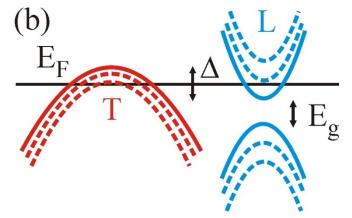
Electronic properties of Bi are <u>strongly</u> determined by the purity of the sample and its orientation vs. crystal axes

Good sample should be:

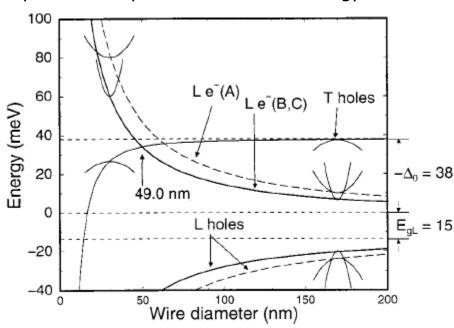
- \square pure (low electron concentration \rightarrow low E_F)
- □ single crystal (anisotropic energy spectrum)
- not mechanically stressed

Bi band structure

Golin S. Phys Rev. 166, 643, 1968

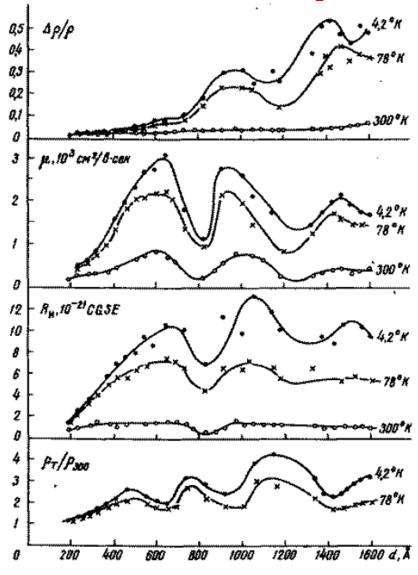

Energy dispersion at L-point is essentially nonparabolic. However, at $E \le E_F$ it can be reduced to:

$$E_L(\mathbf{k}) = -\frac{E_g}{2} \pm \frac{E_g}{2} \sqrt{1 + \frac{2\hbar^2}{E_g} (\frac{k_x^2}{m_x} + \frac{k_y^2}{m_y} + \frac{k_z^2}{m_z})}.$$

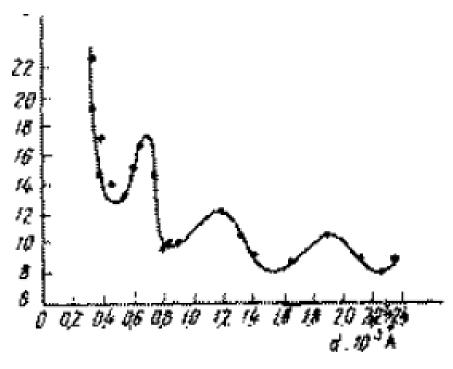

B. Lax and J. G. Mavroides, in Solid State Physics, 261, (Academic Press, NY, 1960)

For bismuth nanowire with the most 'favorable' orientation (with the lowest effective masses m*~0.001m₀) theory predict:

- (1) periodic variation of resistance with reduction of diameter:
- (2) transition to semiconductor state at ~ 50 nm.



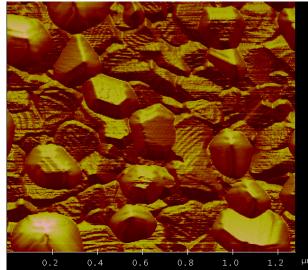
Schematic diagram of the Bi band structure at the L-points and T-point near the Fermi energy level.



Y.-M. Lin, X. Sun, and M. S. Dresselhaus, PRB, 62, 4610 (2000)

First experiments on Bi films

Yu. F. Ogrin, V. N. Lutski and M. I. Elinson, *Pisma ZhETP* 3,114(1966)


Yu. F. Ogrin, et. al., **ZhETP** 53,1218 (1967)

Qualitatively the effect is observed, while theory interpretation is problematic due to polycrystalline structure of films with relatively random orientation of grains

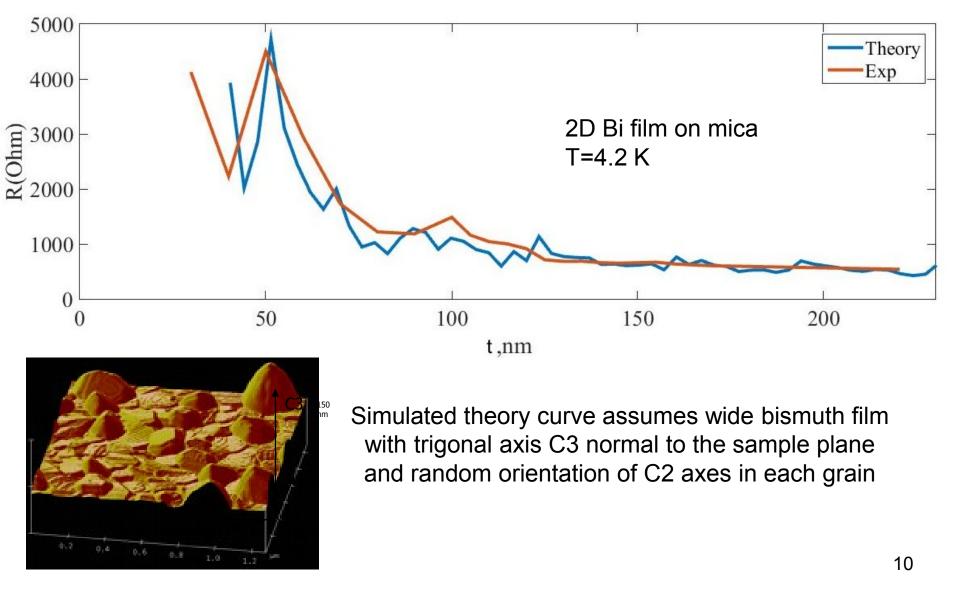
Bi film fabrication:


optimization of substrate and deposition

Substrate	Thickness nm	Pevap, 10 ⁻⁶ mBar	T _{evap} , K	Evaporation rate, nm/s	$ ho_{ m ROOM}$, $10^{-8}\Omega$ * m	ρ _{77Κ} , 10 ⁻⁸ Ω * m	4.2 K		
							$ ho_{4.2K}$, $10^{-8} \Omega * m$	n _{4.2K} , 10 ⁺¹⁸ ,1/cm	$\mu_{4.2K}$, 10^{+4} , cm ² /Vs
Bulk Bi					150		450	0.3	2
MICA	40	3.1	~ 300	0.15	221	400	401	10	0.15
	150	5.1	~ 380	0.1	302	842	1106	9	0.07
	40	0.68	77	0.15	1588	2192	2300	20±4	0.0068
SiN	40	1.6	~300	0.16	600±30	1490±70	1510±90	60±20	0.0069
Si	40	1.6	~300	0.15	572	1320	1476	20	0.02

Bi film on glass deposited @ room T

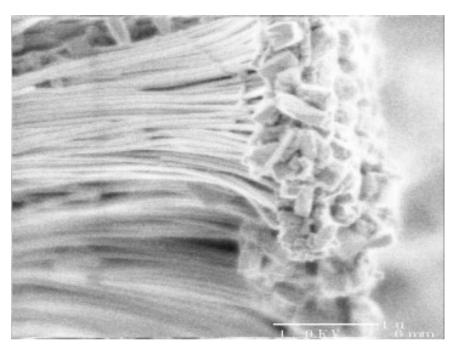
With optimized deposition it is possible to obtain Bi film on mica with the grain size of about 1 μm.


T = 433 K

T= 448 K

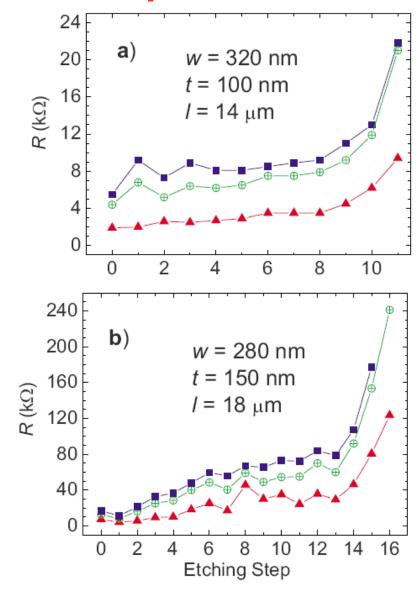
T= 473 K

D.-H. Kim, et. al., Bi on glass, Appl. Surf. Sci, 2005

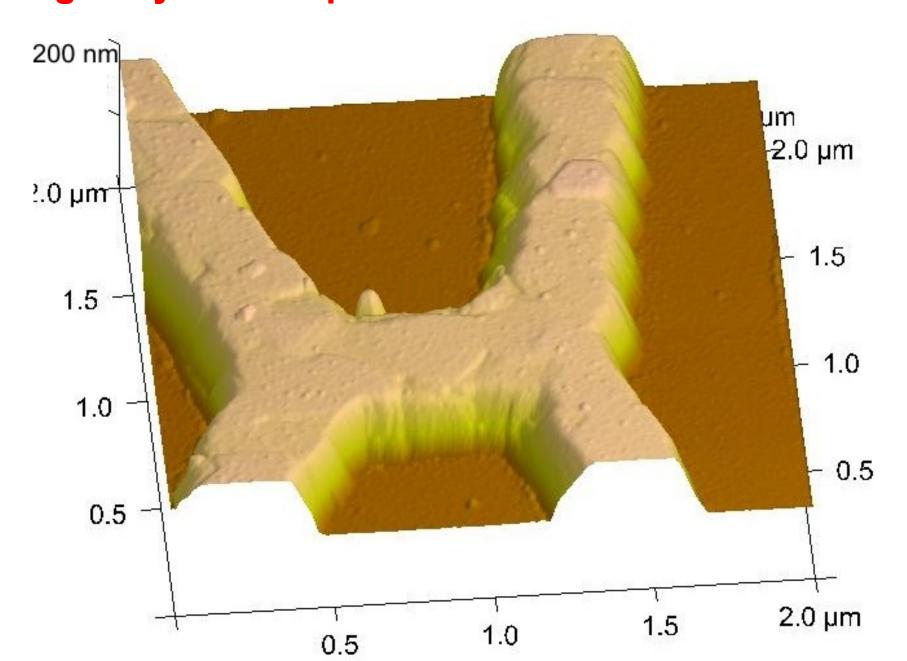

2D bismuth film

1D limit: Current status of experiments

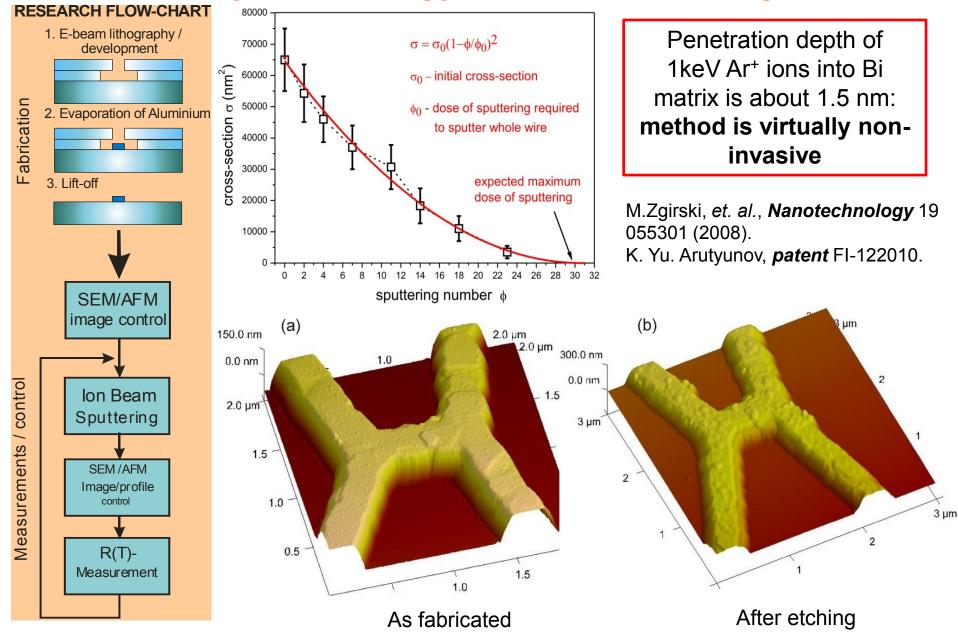
M.S. Dresselhaus, et.al., PRB 58, R10091 (1998)


M.S. Dresselhaus, et.al., PRB 61, 4850 and 2921 (2000)

SEM image of a bundle of Bi nanowires after the alumina template has been dissolved in the H3PO4/CrO3 solution for 4 days. The Bi chunks on the right of this image are the remnants of a thin Bi Im left over from the Bi melt used to inject Bi into the pores[S.B. Cronin, PhD thesis, MIT 2002].


not a single wire: array of 'corals'
dirty
not well defined shape
stressed (?)

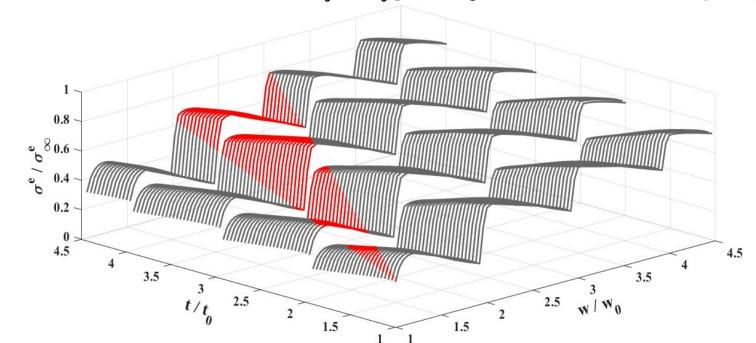
non-Ohmic I-V (contact or structural problems?)average diameter > 60 nm



Long Bi nanowire formed of many grains, no theory fit is possible [Farhangfar S. *PRB* 76, 205437 (2007)]

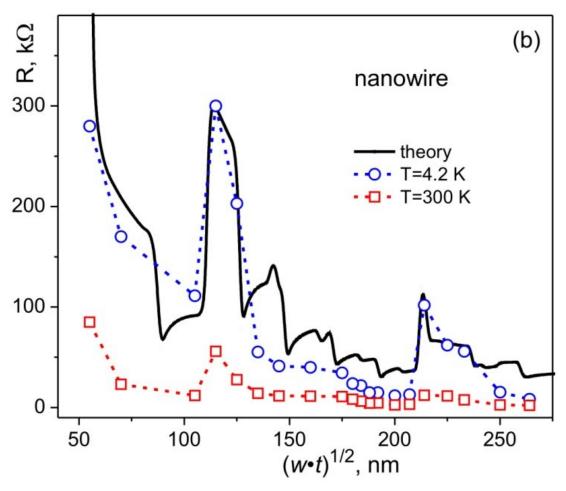
Single crystalline quasi-1D bismuth nanostructure

Progressive reduction of nanowire cross section by low-energy ion beam etching


1D nanowire with rectangular cross section: theory

$$\sigma^{e} = \frac{2e^{2}}{\pi \hbar S} \frac{\mu_{x}^{e}}{m_{z}^{e}} \sum_{ij}^{[r_{w}][r_{i}]} \frac{(2\hbar/V_{0})^{2} \sqrt{U_{ij}^{e}}}{\sum\limits_{i'j'}^{[r_{w}][r_{i}]} \Lambda_{i''j'}^{ij} \sqrt{U_{i''j'}^{e}}}$$

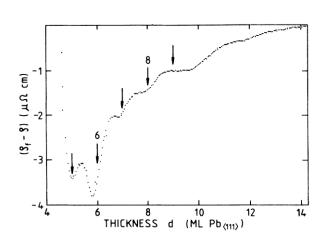
$$\Lambda_{m'n'}^{mn} \equiv (2 + \delta_{mm'})(2 + \delta_{nn'})$$


$$U_{ij}^{e} \equiv 1 - (i/r_{w})^{2} + (\mu_{y}^{e}/\mu_{x}^{e})[1 - (j/r_{t})^{2}]$$

S is the volume concentration of scatterers each of strength V_0 , Parameters $r_w \equiv w/w_0$ and $r_t \equiv t/t_0$ are width and thickness of nanowire, normalized by the relevant dimensions $w_0 = \hbar \pi (M_x \Delta_x)^{1/2}$ and $t_0 = \hbar \pi (M_y \Delta_y)^{1/2}$ corresponding to metal-to-semiconductor transition. Parameters S and V_0 are not known with necessary accuracy and are set by fits for 'bulk' sample $w > w_0$, $t > t_0$ [Farhangfar S. **PRB** 74, 205318 (2006)]

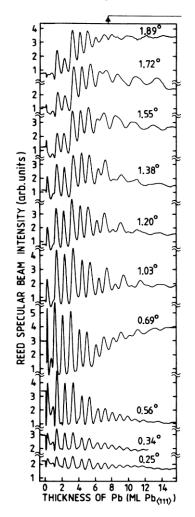
Calculated electronic conductivity of bismuth nanostructure cut along bisectrix axis. For nanowire of rectangular cross section $(w \cdot t)$ the electronic conductivity σ^e exhibits oscillatory behavior as function of corresponding dimension(s). The bulk conductivity σ^e recovers at scales $w \cdot w \cdot w_0$, $t \cdot v \cdot t_0$, where $w_0 \approx 110$ nm and $t_0 \approx 25$ nm are the critical width and thickness corresponding to metal-to-semiconductor transition. Bright cone represents the range of studied samples.

1D nanowire: experiment

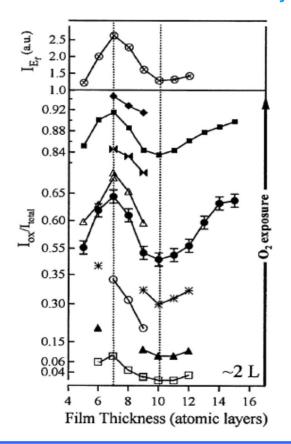


Dependence of bismuth nanowire resistance R **on effective diameter** d_{eff} =(w·t)^{1/2}. Circles (\circ) correspond to liquid helium temperature T=4.2 K, squares (\square) stand for room temperature data. Dotted lines connecting experimental points are guides for eye. Theory fit (solid line) assumes trigonal axis C3 being normal to the sample plane and ~3 degree misorientation angle between the sample axis and the crystallographic bisectrix axis C2. Best fit 'trajectory' in coordinates R(w,t) stands for reduction of dw=1.87 nm and dt=1.69 nm between successive points starting from a nanowire with initial width w=300 nm and thickness t=265 nm.

Other quantum size phenomena


QSE should be observed in any low-dimensional system (e.g. film or wire) and should also affect properties other than electric conductivity.

2D conductivity



Epitaxial Pb films M. Jalochovski, E. Bauer PRB, 38, 5272 (1988)

Reflectivity of lead film

Surface chemical activity

Thickness-dependent variations in the oxidation rate of Mg film 17 L. Aballe, et.al. PRL 93, 196103 (2004)

Conclusion on quantum size effect in normal metals

- QSE is a universal phenomenon
- Observation of QSE in 'good' metals requires dimensions ~1 nm
- In semimetal like bismuth QSE can contribute already at 50 nm scales

Master degree "Quantum Information Technology" 2 year program in English to start in September 2017