Правительство Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

Национальный исследовательский университет "Высшая школа экономики"

Московский институт электроники и математики

ОТЧЕТ ПО ПРОХОЖДЕНИЮ ЛАБОРАТОРНОГО ПРАКТИКУМА ИФП имени П.Л. КАПИЦЫ РАН

Студент группы БИТ-141,ДЭИ Карабасов Таиржан Именович

Москва, 2016 г.

Оглавление

Введение	3
Изучение среды LabVIEW	4
Создание файла для записи данных	4
Изучение измерительных приборов	4
Универсальный вольтметр В7-65/2	4
Picotest G5100A Waveform Generator и Agilent 33220A Waveform Generator	6
Реализация автоматизированной измерительной схемы измерения	
вольтамперных характеристик исследуемого образца	7
Приготовление образца	9
Измерение вольт-амперных характеристик образца при комнатной температу	pe
	. 10
Измерение вольт-амперных характеристик образца в жидком азоте	. 10
Анализ полученных результатов	. 10
Заключение	. 13

Введение

Данный отчет содержит информацию о пройденном лабораторном практикуме в Институте Физических проблем имени П.Л. Капицы в рамках участия в научно – учебной группе «Физика низкоразмерных квантовых систем».

Основной целью для достижения по итогам прохождения физического практикума является приобретение навыков работы в программной среде Labview, а именно разработка автоматизированных программ для измерений вольтамперных характеристик посредством подключения измерительных приборов к персональному компьютеру через соответствующие порты. Более того необходимо также получение базовых представлений о проведении низкотемпературного эксперимента.

Изучение среды LabVIEW

Среда разработки для выполнения программ, созданных на графическом языке программирования "G"от National Instruments. Были созданы subVI(подпрограмма) для дальнейшего использования в экспериментах.

Создание файла для записи данных

Прилагаю файл со схемой программы.

Рис. 1: Создание файл для записи экспериментальных данных с датой и временем результатов

Изучение измерительных приборов

Универсальный вольтметр В7-65/2

Базовая погрешность вольтметров В7-65/2 по постоянному току составляет 0,02

%. Максимальная разрешающая способность - 1 мкВ, 10 мкА, 1 мОм.

Вольтметры серии В7-65 измеряют частоту до 1 МГц. Соединение с

компьютером было осуществлено с помощью интерфейса RS-232. 7 битная

кодировка (Белорусский стандарт). Скорость передачи данных - 9600 бит/сек. Данные настройки были произведены с помощью утилиты Visaconf.

Рис. 2: subVI для чтения с прибора

Рис. 3: subVI для "общения" с прибором

Были выявлены следующие ошибки: Ошибка 53 и 54.

Прибору выделялось 100 бит памяти, но он их не получал (ERROR 54). Это проблема была решена путем выделения памяти до момента начала работы основного блока программы.

Рис. 4: Решение ошибки памяти

Picotest G5100A Waveform Generator и Agilent 33220A

Waveform Generator

Были использованы одни и те же subVI, так как Picotest G5100A основан на

Agilent 33220А, используя более упрощенную форму управления.

Мы использовали Initialize.vi и Configure Output Impedance.vi.

VISA resource name				VISA resou	irce name ou
1%				ľ%	
		Seria	Config	uration	
ID Query (True)		Ba	ud Rate		
True		÷) 9	500	9600	
		Flo	w Contro	ol	
		(†) D	TR/DSR	4	
		Pa	rity		
Keset (True)		() N	one	0	
True		Da	ta Bits		
		(r) 8		8	
error in (no erro	or)			error ou	t
status code				status	code
✓ (2) ≤ 0				1	40
source	_			source	

Произвели конфигурацию VISA для нашего устройства.

VISA resource n	ame	VISA resource name out			
×]	^I %			
	Impedance (0: 50	Ohms)			
	() Stillings				
	User-Defined Impedance (50 Ohms)				
	() 3000				
error in (no error)		error out			
status code		status code			
🖉 👌 🚳		✓ d0			
source		source			

Рис. 6: Impedance.vi

Произвели конфигурацию бесконечного сопротивления прибора (High Impedance) поскольку по умолчанию данный генератор сигналов настроен на сопротивление 50 Ом.

Реализация автоматизированной измерительной схемы измерения вольтамперных характеристик исследуемого образца

Все измерения проходили с использованием следующей VI:

1) Вне цикла инициализируем приборы и компоненты, используем нашу subVI для создания файла, куда будут записываться наши экспериментальные данные.

Рис. 7: Инициализация компонентов вне цикла while

 Выполняется цикл, где каждую микросекунду вольтаж увеличивается на значение off set (подбирается) до тех пор, пока не достигнет определенного конечного значения. При этом производится задержка, и считанные с прибора данные передаются на запись в исходный файл.

Рис. 8: Цикл while

2) Непосредственная запись измерений в файл по прохождению каждой итерации.

Рис. 9: Запись в исходный файл

Приготовление образца

В нашей схеме присутствует диод и резистор (для измерения тока) Схема:

Рис. 10: Схема для пайки

Измерение вольт-амперных характеристик образца при комнатной температуре

Получаем два файла:

1. Для резистора (Берем значения с І, наш истинный ток)

2. Для диода (Берем значения столбца с U, наше искомое напряжение) Формируем новый dat файл с нашим током и напряжением.

Измерение вольт-амперных характеристик образца в жидком азоте

Получаем два файла:

- 1) Для резистора (Берем значения с І, наш истинный ток)
- 2) Для диода (Берем значения столбца с U, наше искомое напряжение) Формируем новый dat файл с нашим током и напряжением.

Анализ полученных результатов

Мы должны аппроксимировать характеристику диода с помощью экспоненциальной функции.

$$I = I_{S}(T)(e^{U_{AK}/mU_{T}}-1)$$
(1)

I_s- теоретический обратный ток, $U_T = kT/e_{\theta}$ - температурный потенциал При комнатной температуре:

 $U_T = 25.5 \text{ mB}$

Поправочный коэффициент m учитывает отклонение от теории диода Шокли.

Анализ данных был произведен с помощью gnuplot. При комнатной температуре:

Рис. 11: График зависимости I от U при комнатной температуре

В жидком азоте:

Рис.13: Диод, помещенный в жидкий азот

Заключение

В заключении стоит отметить, что по прохождению лабораторного практикума, я приобрел начальные навыки работы в Labview, а также получил первый опыт проведения низкотемпературного эксперимента.